EPI-SQL: Enhancing Text-to-SQL Translation with Error-Prevention Instructions
- URL: http://arxiv.org/abs/2404.14453v1
- Date: Sun, 21 Apr 2024 03:52:46 GMT
- Title: EPI-SQL: Enhancing Text-to-SQL Translation with Error-Prevention Instructions
- Authors: Xiping Liu, Zhao Tan,
- Abstract summary: This paper introduces EPI-, a novel methodological framework leveraging Large Language Models (LLMs) to enhance the performance of Text-to-one tasks.
EPI- operates through a four-step process to generate general error-prevention instructions (EPIs)
It provides task-specific guidance, enabling the model to circumvent potential errors for the task at hand.
- Score: 0.5755004576310334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The conversion of natural language queries into SQL queries, known as Text-to-SQL, is a critical yet challenging task. This paper introduces EPI-SQL, a novel methodological framework leveraging Large Language Models (LLMs) to enhance the performance of Text-to-SQL tasks. EPI-SQL operates through a four-step process. Initially, the method involves gathering instances from the Spider dataset on which LLMs are prone to failure. These instances are then utilized to generate general error-prevention instructions (EPIs). Subsequently, LLMs craft contextualized EPIs tailored to the specific context of the current task. Finally, these context-specific EPIs are incorporated into the prompt used for SQL generation. EPI-SQL is distinguished in that it provides task-specific guidance, enabling the model to circumvent potential errors for the task at hand. Notably, the methodology rivals the performance of advanced few-shot methods despite being a zero-shot approach. An empirical assessment using the Spider benchmark reveals that EPI-SQL achieves an execution accuracy of 85.1\%, underscoring its effectiveness in generating accurate SQL queries through LLMs. The findings indicate a promising direction for future research, i.e. enhancing instructions with task-specific and contextualized rules, for boosting LLMs' performance in NLP tasks.
Related papers
- STaR-SQL: Self-Taught Reasoner for Text-to-SQL [20.719165038519744]
"chain-of-thought" rationales have proven effective for improving the performance of large language models on complex reasoning tasks.
Applying such techniques to structured tasks, such as text-to-driven, remains largely unexplored.
In this paper, we introduce Self-Taughter for text-to-driven (STaR-), a novel approach that reframes query generation as a reasoning process.
Experimental results on the challenging Spider benchmark demonstrate that STaR- significantly improves text-to-performance, achieving an execution accuracy of 86.6%.
These findings underscore the potential of reasoning-augmented training for
arXiv Detail & Related papers (2025-02-19T08:58:44Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
We introduce E-Seek, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation.
E-Seek enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question andsql construction plan, bridging the gap between the query and the database structure.
Comprehensive evaluations illustrate that E-Seek achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set.
arXiv Detail & Related papers (2024-09-25T09:02:48Z) - PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
Large Language Models (LLMs) have emerged as powerful tools for Text-to-sense tasks.
In this study, we propose that employing query group partitioning allows LLMs to focus on learning the thought processes specific to a single problem type.
arXiv Detail & Related papers (2024-09-21T09:33:14Z) - DAC: Decomposed Automation Correction for Text-to-SQL [51.48239006107272]
We introduce De Automation Correction (DAC), which corrects text-to-composed by decomposing entity linking and skeleton parsing.
We show that our method improves performance by $3.7%$ on average of Spider, Bird, and KaggleDBQA compared with the baseline method.
arXiv Detail & Related papers (2024-08-16T14:43:15Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL [1.734218686180302]
This paper introduces a method for Text-to- Execute based on Refined Execution Model and Hardness Prompt.
It reduces storage and training costs while maintaining performance.
Our experiments on the Spider dataset, specifically with large-scale LMs, achieved an exceptional accuracy (EX) of 82.6%.
arXiv Detail & Related papers (2024-06-13T14:04:34Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.