Pseudorandom Permutations from Random Reversible Circuits
- URL: http://arxiv.org/abs/2404.14648v3
- Date: Sun, 8 Sep 2024 14:37:35 GMT
- Title: Pseudorandom Permutations from Random Reversible Circuits
- Authors: William He, Ryan O'Donnell,
- Abstract summary: We show that a random circuit of depth $n cdot tildeO(k2)$, with each layer consisting of $approx n/3$ random gates in a fixed nearest-neighbor architecture, yields almost $k$-wise independent permutations.
We also show that the Luby-Rack-off construction of pseudorandom permutations from pseudorandom functions can be implemented with reversible circuits.
- Score: 1.9567015559455132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study pseudorandomness properties of permutations on $\{0,1\}^n$ computed by random circuits made from reversible $3$-bit gates (permutations on $\{0,1\}^3$). Our main result is that a random circuit of depth $n \cdot \tilde{O}(k^2)$, with each layer consisting of $\approx n/3$ random gates in a fixed nearest-neighbor architecture, yields almost $k$-wise independent permutations. The main technical component is showing that the Markov chain on $k$-tuples of $n$-bit strings induced by a single random $3$-bit nearest-neighbor gate has spectral gap at least $1/n \cdot \tilde{O}(k)$. This improves on the original work of Gowers [Gowers96], who showed a gap of $1/\mathrm{poly}(n,k)$ for one random gate (with non-neighboring inputs); and, on subsequent work [HMMR05,BH08] improving the gap to $\Omega(1/n^2k)$ in the same setting. From the perspective of cryptography, our result can be seen as a particularly simple/practical block cipher construction that gives provable statistical security against attackers with access to $k$~input-output pairs within few rounds. We also show that the Luby--Rackoff construction of pseudorandom permutations from pseudorandom functions can be implemented with reversible circuits. From this, we make progress on the complexity of the Minimum Reversible Circuit Size Problem (MRCSP), showing that block ciphers of fixed polynomial size are computationally secure against arbitrary polynomial-time adversaries, assuming the existence of one-way functions (OWFs).
Related papers
- Incompressibility and spectral gaps of random circuits [2.359282907257055]
reversible and quantum circuits form random walks on the alternating group $mathrmAlt (2n)$ and unitary group $mathrmSU (2n)$, respectively.
We prove that the gap for random reversible circuits is $Omega(n-3)$ for all $tgeq 1$, and the gap for random quantum circuits is $Omega(n-3)$ for $t leq Theta(2n/2)$.
arXiv Detail & Related papers (2024-06-11T17:23:16Z) - Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Simple constructions of linear-depth t-designs and pseudorandom unitaries [40.72668922727092]
Uniformly random unitaries, i.e. unitaries drawn from the Haar measure, have many useful properties, but cannot be implemented efficiently.
Two different notions of derandomisation have emerged: $t-designs are random unitaries that reproduce the first $t moments of the Haar measure, and pseudorandom unitaries (PRUs) are random unitaries that are computationally indistinguishable from Haar random.
arXiv Detail & Related papers (2024-04-19T06:13:02Z) - Crooked indifferentiability of the Feistel Construction [53.572703605492904]
The Feistel construction is a fundamental technique for building pseudorandom permutations and block ciphers.
This paper shows that a simple adaptation of the construction is resistant, even to algorithm substitution attacks.
arXiv Detail & Related papers (2024-04-15T04:29:24Z) - Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations [49.1574468325115]
Sponge hashing is a widely used class of cryptographic hash algorithms.
Intrepid permutations have so far remained a fundamental open problem.
We show that finding zero-pairs in a random $2n$-bit permutation requires at least $Omega (2n/2)$ many queries.
arXiv Detail & Related papers (2024-03-07T18:46:58Z) - Classical simulation of peaked shallow quantum circuits [2.6089354079273512]
We describe an algorithm with quasipolynomial runtime $nO(logn)$ that samples from the output distribution of a peaked constant-depth circuit.
Our algorithms can be used to estimate output probabilities of shallow circuits to within a given inverse-polynomial additive error.
arXiv Detail & Related papers (2023-09-15T14:01:13Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Post-Quantum Security of the Even-Mansour Cipher [14.141778162933013]
Even-Mansour cipher is secure against classical attacks.
Even-Mansour can still be proven secure in natural, "post-quantum" setting.
arXiv Detail & Related papers (2021-12-14T16:43:34Z) - On Submodular Contextual Bandits [92.45432756301231]
We consider the problem of contextual bandits where actions are subsets of a ground set and mean rewards are modeled by an unknown monotone submodular function.
We show that our algorithm efficiently randomizes around local optima of estimated functions according to the Inverse Gap Weighting strategy.
arXiv Detail & Related papers (2021-12-03T21:42:33Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.