Watch Out for Your Guidance on Generation! Exploring Conditional Backdoor Attacks against Large Language Models
- URL: http://arxiv.org/abs/2404.14795v4
- Date: Wed, 21 Aug 2024 13:32:18 GMT
- Title: Watch Out for Your Guidance on Generation! Exploring Conditional Backdoor Attacks against Large Language Models
- Authors: Jiaming He, Wenbo Jiang, Guanyu Hou, Wenshu Fan, Rui Zhang, Hongwei Li,
- Abstract summary: backdoor attacks on large language models (LLMs) typically set a fixed trigger in the input instance and specific responses for triggered queries.
We present a new poisoning paradigm against LLMs triggered by specifying generation conditions.
The poisoned model performs normally for output under normal/other generation conditions, while becoming harmful for output under target generation conditions.
- Score: 8.348993615202138
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mainstream backdoor attacks on large language models (LLMs) typically set a fixed trigger in the input instance and specific responses for triggered queries. However, the fixed trigger setting (e.g., unusual words) may be easily detected by human detection, limiting the effectiveness and practicality in real-world scenarios. To enhance the stealthiness of backdoor activation, we present a new poisoning paradigm against LLMs triggered by specifying generation conditions, which are commonly adopted strategies by users during model inference. The poisoned model performs normally for output under normal/other generation conditions, while becomes harmful for output under target generation conditions. To achieve this objective, we introduce BrieFool, an efficient attack framework. It leverages the characteristics of generation conditions by efficient instruction sampling and poisoning data generation, thereby influencing the behavior of LLMs under target conditions. Our attack can be generally divided into two types with different targets: Safety unalignment attack and Ability degradation attack. Our extensive experiments demonstrate that BrieFool is effective across safety domains and ability domains, achieving higher success rates than baseline methods, with 94.3 % on GPT-3.5-turbo
Related papers
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
Large language models (LLMs) have demonstrated remarkable capabilities.
Their powerful generative abilities enable flexible responses based on various queries or instructions.
This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects.
arXiv Detail & Related papers (2024-08-20T10:44:29Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
We propose AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base.
Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning.
On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance.
arXiv Detail & Related papers (2024-07-17T17:59:47Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - Query-Based Adversarial Prompt Generation [67.238873588125]
We build adversarial examples that cause an aligned language model to emit harmful strings.
We validate our attack on GPT-3.5 and OpenAI's safety classifier.
arXiv Detail & Related papers (2024-02-19T18:01:36Z) - ParaFuzz: An Interpretability-Driven Technique for Detecting Poisoned
Samples in NLP [29.375957205348115]
We propose an innovative test-time poisoned sample detection framework that hinges on the interpretability of model predictions.
We employ ChatGPT, a state-of-the-art large language model, as our paraphraser and formulate the trigger-removal task as a prompt engineering problem.
arXiv Detail & Related papers (2023-08-04T03:48:28Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
adversarial attacks, and observe that the adversarial examples generated from a source model fail to attack the target models.
We propose an ensemble attack for semantic segmentation to achieve more effective attacks with higher transferability.
arXiv Detail & Related papers (2023-07-31T11:05:55Z) - Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in
Language Models [41.1058288041033]
We propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt.
Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack.
arXiv Detail & Related papers (2023-05-02T06:19:36Z) - Unreasonable Effectiveness of Last Hidden Layer Activations [0.5156484100374058]
We show that using some widely known activation functions in the output layer of the model with high temperature values has the effect of zeroing out the gradients for both targeted and untargeted attack cases.
We've experimentally verified the efficacy of our approach on MNIST (Digit), CIFAR10 datasets.
arXiv Detail & Related papers (2022-02-15T12:02:59Z) - Backdoor Pre-trained Models Can Transfer to All [33.720258110911274]
We propose a new approach to map the inputs containing triggers directly to a predefined output representation of pre-trained NLP models.
In light of the unique properties of triggers in NLP, we propose two new metrics to measure the performance of backdoor attacks.
arXiv Detail & Related papers (2021-10-30T07:11:24Z) - Generating Label Cohesive and Well-Formed Adversarial Claims [44.29895319592488]
Adversarial attacks reveal important vulnerabilities and flaws of trained models.
We investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning.
We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.
arXiv Detail & Related papers (2020-09-17T10:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.