CNN2GNN: How to Bridge CNN with GNN
- URL: http://arxiv.org/abs/2404.14822v1
- Date: Tue, 23 Apr 2024 08:19:08 GMT
- Title: CNN2GNN: How to Bridge CNN with GNN
- Authors: Ziheng Jiao, Hongyuan Zhang, Xuelong Li,
- Abstract summary: We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
- Score: 59.42117676779735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the convolutional neural network (CNN) has achieved excellent performance in vision tasks by extracting the intra-sample representation, it will take a higher training expense because of stacking numerous convolutional layers. Recently, as the bilinear models, graph neural networks (GNN) have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, it cannot be directly utilized on non-graph data due to the lack of graph structure and has high inference latency on large-scale scenarios. Inspired by these complementary strengths and weaknesses, \textit{we discuss a natural question, how to bridge these two heterogeneous networks?} In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. Firstly, to break the limitations of GNN, a differentiable sparse graph learning module is designed as the head of networks to dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge from CNN to GNN and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of distilled ``boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
Related papers
- Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Network In Graph Neural Network [9.951298152023691]
We present a model-agnostic methodology that allows arbitrary GNN models to increase their model capacity by making the model deeper.
Instead of adding or widening GNN layers, NGNN deepens a GNN model by inserting non-linear feedforward neural network layer(s) within each GNN layer.
arXiv Detail & Related papers (2021-11-23T03:58:56Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.