Combining Retrieval and Classification: Balancing Efficiency and Accuracy in Duplicate Bug Report Detection
- URL: http://arxiv.org/abs/2404.14877v1
- Date: Tue, 23 Apr 2024 10:06:19 GMT
- Title: Combining Retrieval and Classification: Balancing Efficiency and Accuracy in Duplicate Bug Report Detection
- Authors: Qianru Meng, Xiao Zhang, Guus Ramackers, Visser Joost,
- Abstract summary: We propose a transformer-based system designed to strike a balance between time efficiency and accuracy performance.
Our system maintains accuracy comparable to a classification model, significantly outperforming it in time efficiency and only slightly behind a retrieval model in time.
- Score: 2.522333180723133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of Duplicate Bug Report Detection (DBRD), conventional methods primarily focus on statically analyzing bug databases, often disregarding the running time of the model. In this context, complex models, despite their high accuracy potential, can be time-consuming, while more efficient models may compromise on accuracy. To address this issue, we propose a transformer-based system designed to strike a balance between time efficiency and accuracy performance. The existing methods primarily address it as either a retrieval or classification task. However, our hybrid approach leverages the strengths of both models. By utilizing the retrieval model, we can perform initial sorting to reduce the candidate set, while the classification model allows for more precise and accurate classification. In our assessment of commonly used models for retrieval and classification tasks, sentence BERT and RoBERTa outperform other baseline models in retrieval and classification, respectively. To provide a comprehensive evaluation of performance and efficiency, we conduct rigorous experimentation on five public datasets. The results reveal that our system maintains accuracy comparable to a classification model, significantly outperforming it in time efficiency and only slightly behind a retrieval model in time, thereby achieving an effective trade-off between accuracy and efficiency.
Related papers
- Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.
This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.
We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.
To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation [17.351089059392674]
We propose a framework for model evaluation that includes stratification, sampling, and estimation components.
We show that stratification via k-means clustering based on accurate predictions of model performance yields efficient estimators.
We also find that model-assisted estimators, which leverage predictions of model accuracy on the unlabeled portion of the dataset, are generally more efficient than the traditional estimates.
arXiv Detail & Related papers (2024-06-11T14:49:04Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
We investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection.
We propose a novel and generic method that can be applied to any data type and distance function.
arXiv Detail & Related papers (2020-02-15T20:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.