UCINet0: A Machine Learning based Receiver for 5G NR PUCCH Format 0
- URL: http://arxiv.org/abs/2404.15243v1
- Date: Sun, 10 Mar 2024 09:56:02 GMT
- Title: UCINet0: A Machine Learning based Receiver for 5G NR PUCCH Format 0
- Authors: Anil Kumar Yerrapragada, Jeeva Keshav Sattianarayanin, Radha Krishna Ganti,
- Abstract summary: This paper explores an AI/ML-based receiver design for PUCCH Format 0.
First-of-a-kind neural network, which we term UCINet0, is capable of predicting when no user is transmitting on the PUCCH.
Inference results with both simulated and hardware-captured field datasets show that the UCINet0 model outperforms conventional DFT-based decoders across all SNR ranges.
- Score: 0.6226609932118122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate decoding of Uplink Control Information (UCI) on the Physical Uplink Control Channel (PUCCH) is essential for enabling 5G wireless links. This paper explores an AI/ML-based receiver design for PUCCH Format 0. Format 0 signaling encodes the UCI content within the phase of a known base waveform and even supports multiplexing of up to 12 users within the same time-frequency resources. Our first-of-a-kind neural network classifier, which we term UCINet0, is capable of predicting when no user is transmitting on the PUCCH, as well as decoding the UCI content of any number of multiplexed users, up to 12. Inference results with both simulated and hardware-captured field datasets show that the UCINet0 model outperforms conventional DFT-based decoders across all SNR ranges.
Related papers
- UniEnc-CASSNAT: An Encoder-only Non-autoregressive ASR for Speech SSL
Models [23.383924361298874]
We propose a new encoder-based NASR, UniEnc-CASSNAT, to combine the advantages of CTC and CASS-NAT.
The proposed UniEnc-CASSNAT achieves state-of-the-art NASR results and is better or comparable to CASS-NAT with only an encoder.
arXiv Detail & Related papers (2024-02-14T02:11:04Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - Streaming Audio-Visual Speech Recognition with Alignment Regularization [69.30185151873707]
We propose a streaming AV-ASR system based on a hybrid connectionist temporal classification ( CTC)/attention neural network architecture.
The proposed AV-ASR model achieves WERs of 2.0% and 2.6% on the Lip Reading Sentences 3 dataset in an offline and online setup.
arXiv Detail & Related papers (2022-11-03T20:20:47Z) - Machine Learning Decoder for 5G NR PUCCH Format 0 [2.714583452862023]
This paper makes the first attempt at using Machine Learning techniques to improve the decoding performance of the Physical Uplink Control Channel Format 0.
We use fully connected neural networks to classify the received samples based on the uplink control information content embedded within them.
The trained neural network, tested on real-time wireless captures, shows significant improvement in accuracy over conventional DFT-based decoders, even at low SNR.
arXiv Detail & Related papers (2022-08-26T13:34:23Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z) - A Streamwise GAN Vocoder for Wideband Speech Coding at Very Low Bit Rate [8.312162364318235]
We present a GAN vocoder which is able to generate wideband speech waveforms from parameters coded at 1.6 kbit/s.
The proposed model is a modified version of the StyleMelGAN vocoder that can run in frame-by-frame manner.
arXiv Detail & Related papers (2021-08-09T14:03:07Z) - Semi-Supervised Learning for Channel Charting-Aided IoT Localization in
Millimeter Wave Networks [97.66522637417636]
A novel framework is proposed for channel charting (CC)-aided localization in millimeter wave networks.
In particular, a convolutional autoencoder model is proposed to estimate the three-dimensional location of wireless user equipment.
The framework is extended to a semi-supervised framework, where the autoencoder is divided into two components.
arXiv Detail & Related papers (2021-08-03T14:41:38Z) - Learning from Heterogeneous EEG Signals with Differentiable Channel
Reordering [51.633889765162685]
CHARM is a method for training a single neural network across inconsistent input channels.
We perform experiments on four EEG classification datasets and demonstrate the efficacy of CHARM.
arXiv Detail & Related papers (2020-10-21T12:32:34Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
We introduce a novel "all-spike" low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs)
We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC)
The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.
arXiv Detail & Related papers (2020-09-03T09:10:16Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.