Deep-learning Optical Flow Outperforms PIV in Obtaining Velocity Fields from Active Nematics
- URL: http://arxiv.org/abs/2404.15497v2
- Date: Fri, 26 Apr 2024 19:04:13 GMT
- Title: Deep-learning Optical Flow Outperforms PIV in Obtaining Velocity Fields from Active Nematics
- Authors: Phu N. Tran, Sattvic Ray, Linnea Lemma, Yunrui Li, Reef Sweeney, Aparna Baskaran, Zvonimir Dogic, Pengyu Hong, Michael F. Hagan,
- Abstract summary: We evaluate the ability of optical flow to quantify the spontaneous flows of MT-based active nematics under different labeling conditions.
DLOF produces significantly more accurate velocity fields than PIV for densely labeled samples.
Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
- Score: 2.0722018747867863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects at the pixel level. In this article, we evaluate the ability of optical flow to quantify the spontaneous flows of MT-based active nematics under different labeling conditions. We compare DLOF against the commonly used technique, particle imaging velocimetry (PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on samples with sparsely labeled filaments, or from passive tracer beads. We find that DLOF produces significantly more accurate velocity fields than PIV for densely labeled samples. We show that the breakdown of PIV arises because the algorithm cannot reliably distinguish contrast variations at high densities, particularly in directions parallel to the nematic director. DLOF overcomes this limitation. For sparsely labeled samples, DLOF and PIV produce results with similar accuracy, but DLOF gives higher-resolution fields. Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
Related papers
- Spike Imaging Velocimetry: Dense Motion Estimation of Fluids Using Spike Cameras [56.30609439239127]
This study investigates the tremendous potential of spike cameras (a type of ultra-high-speed, high-dynamic-range camera) in Particle Image Velocimetry (PIV)
We propose a deep learning framework, Spike Imaging Velocimetry (SIV), designed specifically for highly turbulent and intricate flow fields.
We present a spike-based PIV dataset, Particle Scenes with Spike and Displacement (PSSD), which provides labeled data for three challenging fluid dynamics scenarios.
arXiv Detail & Related papers (2025-04-26T09:14:45Z) - OCAI: Improving Optical Flow Estimation by Occlusion and Consistency Aware Interpolation [55.676358801492114]
We propose OCAI, a method that supports robust frame ambiguities by generating intermediate video frames alongside optical flows in between.
Our evaluations demonstrate superior quality and enhanced optical flow accuracy on established benchmarks such as Sintel and KITTI.
arXiv Detail & Related papers (2024-03-26T20:23:48Z) - MVFlow: Deep Optical Flow Estimation of Compressed Videos with Motion
Vector Prior [16.633665275166706]
We propose an optical flow model, MVFlow, which uses motion vectors to improve the speed and accuracy of optical flow estimation for compressed videos.
The experimental results demonstrate the superiority of our proposed MVFlow by 1.09 compared to existing models or save time to achieve similar accuracy to existing models.
arXiv Detail & Related papers (2023-08-03T07:16:18Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Weakly-Supervised Optical Flow Estimation for Time-of-Flight [11.496094830445054]
We propose a training algorithm, which allows to supervise Optical Flow networks directly on the reconstructed depth.
We demonstrate that this approach enables the training of OF networks to align raw iToF measurements and compensate motion artifacts in the iToF depth images.
arXiv Detail & Related papers (2022-10-11T09:47:23Z) - Sensor-Guided Optical Flow [53.295332513139925]
This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy on known or unseen domains.
We show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms.
arXiv Detail & Related papers (2021-09-30T17:59:57Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
Motion representation between consecutive frames has proven to have great promotion to video understanding.
TV-L1 method, an effective optical flow solver, is time-consuming and expensive in storage for caching the extracted optical flow.
We propose UF-TSN, a novel end-to-end action recognition approach enhanced with an embedded lightweight unsupervised optical flow estimator.
arXiv Detail & Related papers (2021-03-05T04:14:32Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z) - Estimating Nonplanar Flow from 2D Motion-blurred Widefield Microscopy
Images via Deep Learning [7.6146285961466]
We present a method to predict, from a single textured wide-field microscopy image, the movement of out-of-plane particles using the local characteristics of the motion blur.
This method could enable microscopists to gain insights about the dynamic properties of samples without the need for high-speed cameras or high-intensity light exposure.
arXiv Detail & Related papers (2021-02-14T19:44:28Z) - Neural Particle Image Velocimetry [4.416484585765027]
We introduce a convolutional neural network adapted to the problem, namely Volumetric Correspondence Network (VCN)
The network is thoroughly trained and tested on a dataset containing both synthetic and real flow data.
Our analysis indicates that the proposed approach provides improved efficiency also keeping accuracy on par with other state-of-the-art methods in the field.
arXiv Detail & Related papers (2021-01-28T12:03:39Z) - PAN: Towards Fast Action Recognition via Learning Persistence of
Appearance [60.75488333935592]
Most state-of-the-art methods heavily rely on dense optical flow as motion representation.
In this paper, we shed light on fast action recognition by lifting the reliance on optical flow.
We design a novel motion cue called Persistence of Appearance (PA)
In contrast to optical flow, our PA focuses more on distilling the motion information at boundaries.
arXiv Detail & Related papers (2020-08-08T07:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.