CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
- URL: http://arxiv.org/abs/2404.15653v1
- Date: Wed, 24 Apr 2024 05:13:28 GMT
- Title: CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
- Authors: Sachin Mehta, Maxwell Horton, Fartash Faghri, Mohammad Hossein Sekhavat, Mahyar Najibi, Mehrdad Farajtabar, Oncel Tuzel, Mohammad Rastegari,
- Abstract summary: We present a novel weakly supervised pre-training of vision models on web-scale image-text data.
The proposed method reframes pre-training on image-text data as a classification task.
It achieves a remarkable $2.7times$ acceleration in training speed compared to contrastive learning on web-scale data.
- Score: 40.88256210436378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable $2.7\times$ acceleration in training speed compared to contrastive learning on web-scale data. Through extensive experiments spanning diverse vision tasks, including detection and segmentation, we demonstrate that the proposed method maintains high representation quality. Our source code along with pre-trained model weights and training recipes is available at \url{https://github.com/apple/corenet}.
Related papers
- Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning [78.19528555505961]
We propose a novel vision model pre-training method called Latent Compression Learning (LCL) for interleaved image-text data.
The training objective can be decomposed into two basic tasks: 1) contrastive learning between visual representation and preceding context, and 2) generating subsequent text based on visual representation.
Our experiments demonstrate that our method not only matches the performance of CLIP on paired pre-training datasets, but can also leverage interleaved pre-training data.
arXiv Detail & Related papers (2024-06-11T17:59:35Z) - ALIP: Adaptive Language-Image Pre-training with Synthetic Caption [78.93535202851278]
Contrastive Language-Image Pre-training (CLIP) has significantly boosted the performance of various vision-language tasks.
The presence of intrinsic noise and unmatched image-text pairs in web data can potentially affect the performance of representation learning.
We propose an Adaptive Language-Image Pre-training (ALIP), a bi-path model that integrates supervision from both raw text and synthetic caption.
arXiv Detail & Related papers (2023-08-16T15:19:52Z) - Generative Image Inpainting with Segmentation Confusion Adversarial
Training and Contrastive Learning [14.358417509144523]
We present a new adversarial training framework for image inpainting with segmentation confusion adversarial training (SCAT) and contrastive learning.
SCAT plays an adversarial game between an inpainting generator and a segmentation network, which provides pixel-level local training signals.
We conduct extensive experiments on two benchmark datasets, demonstrating our model's effectiveness and superiority both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-03-23T09:34:17Z) - Cross-Modal Similarity-Based Curriculum Learning for Image Captioning [46.18855398491187]
We propose a simple yet efficient difficulty measurement for image captioning using cross-modal similarity calculated by a pretrained vision-language model.
Experiments on the COCO and Flickr30k datasets show that our proposed approach achieves superior performance and competitive convergence speed to baselines.
arXiv Detail & Related papers (2022-12-14T07:52:36Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
Vision-language pre-training has attracted increasing attention recently.
Massive data are usually collected in a streaming fashion.
We propose a multi-modal knowledge distillation between images and texts to align the instance-wise prediction between old and new models.
arXiv Detail & Related papers (2022-10-31T13:42:21Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.