KS-LLM: Knowledge Selection of Large Language Models with Evidence Document for Question Answering
- URL: http://arxiv.org/abs/2404.15660v1
- Date: Wed, 24 Apr 2024 05:32:41 GMT
- Title: KS-LLM: Knowledge Selection of Large Language Models with Evidence Document for Question Answering
- Authors: Xinxin Zheng, Feihu Che, Jinyang Wu, Shuai Zhang, Shuai Nie, Kang Liu, Jianhua Tao,
- Abstract summary: Large language models (LLMs) suffer from the hallucination problem and face significant challenges when applied to knowledge-intensive tasks.
We propose a novel Knowledge Selection of Large Language Models (KS-LLM) method, aiming to identify valuable information from evidence documents.
We first generate triples based on the input question, then select the evidence sentences most similar to triples from the evidence document, and finally combine the evidence sentences and triples to assist large language models in generating answers.
- Score: 35.87885118640294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) suffer from the hallucination problem and face significant challenges when applied to knowledge-intensive tasks. A promising approach is to leverage evidence documents as extra supporting knowledge, which can be obtained through retrieval or generation. However, existing methods directly leverage the entire contents of the evidence document, which may introduce noise information and impair the performance of large language models. To tackle this problem, we propose a novel Knowledge Selection of Large Language Models (KS-LLM) method, aiming to identify valuable information from evidence documents. The KS-LLM approach utilizes triples to effectively select knowledge snippets from evidence documents that are beneficial to answering questions. Specifically, we first generate triples based on the input question, then select the evidence sentences most similar to triples from the evidence document, and finally combine the evidence sentences and triples to assist large language models in generating answers. Experimental comparisons on several question answering datasets, such as TriviaQA, WebQ, and NQ, demonstrate that the proposed method surpasses the baselines and achieves the best results.
Related papers
- Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning [0.0]
Existing document understanding models tend to generate answers with a single word or phrase directly.
We use Multi-modal Large Language Models (MLLMs) to generate step-wise question-and-answer pairs for document images.
We then use the generated high-quality data to train a humanized document understanding and reasoning model, dubbed DocAssistant.
arXiv Detail & Related papers (2024-02-26T01:17:50Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
We propose an iterative retrieval-generation collaborative framework.
We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks.
arXiv Detail & Related papers (2023-10-08T12:50:57Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs [11.63334863772068]
Multi-document grounded dialogue systems (DGDS) answer users' requests by finding supporting knowledge from a collection of documents.
This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework.
arXiv Detail & Related papers (2023-02-23T08:28:29Z) - Recitation-Augmented Language Models [85.30591349383849]
We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks.
Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance.
arXiv Detail & Related papers (2022-10-04T00:49:20Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Layout-Aware Information Extraction for Document-Grounded Dialogue:
Dataset, Method and Demonstration [75.47708732473586]
We propose a layout-aware document-level Information Extraction dataset, LIE, to facilitate the study of extracting both structural and semantic knowledge from visually rich documents.
LIE contains 62k annotations of three extraction tasks from 4,061 pages in product and official documents.
Empirical results show that layout is critical for VRD-based extraction, and system demonstration also verifies that the extracted knowledge can help locate the answers that users care about.
arXiv Detail & Related papers (2022-07-14T07:59:45Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.