From Complex to Simple: Enhancing Multi-Constraint Complex Instruction Following Ability of Large Language Models
- URL: http://arxiv.org/abs/2404.15846v2
- Date: Tue, 18 Jun 2024 13:16:36 GMT
- Title: From Complex to Simple: Enhancing Multi-Constraint Complex Instruction Following Ability of Large Language Models
- Authors: Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, Yanghua Xiao,
- Abstract summary: We study what training data is effective in enhancing complex constraints following abilities.
We find that training LLMs with instructions containing multiple constraints enhances their understanding of complex instructions.
Our methods improve models' ability to follow instructions generally and generalize effectively across out-of-domain, in-domain, and adversarial settings.
- Score: 43.869374263102934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is imperative for Large language models (LLMs) to follow instructions with elaborate requirements (i.e. Complex Instructions Following). Yet, it remains under-explored how to enhance the ability of LLMs to follow complex instructions with multiple constraints. To bridge the gap, we initially study what training data is effective in enhancing complex constraints following abilities. We found that training LLMs with instructions containing multiple constraints enhances their understanding of complex instructions, especially those with lower complexity levels. The improvement can even generalize to compositions of out-of-domain constraints. Additionally, we further propose methods addressing how to obtain and utilize the effective training data. Finally, we conduct extensive experiments to prove the effectiveness of our methods in terms of overall performance and training efficiency. We also demonstrate that our methods improve models' ability to follow instructions generally and generalize effectively across out-of-domain, in-domain, and adversarial settings, while maintaining general capabilities.
Related papers
- Constraint Back-translation Improves Complex Instruction Following of Large Language Models [55.60192044049083]
Large language models (LLMs) struggle to follow instructions with complex constraints in format, length, etc.
Previous works conduct post-training on complex instruction-response pairs generated by feeding complex instructions to advanced LLMs.
We propose a novel data generation technique, constraint back-translation.
arXiv Detail & Related papers (2024-10-31T17:42:26Z) - TaCIE: Enhancing Instruction Comprehension in Large Language Models through Task-Centred Instruction Evolution [27.949846287419998]
TaCIE redefines instruction evolution from merely evolving seed instructions to a more dynamic and comprehensive combination of elements.
Applying TaCIE across multiple domains, LLMs fine-tuned with these evolved instructions have substantially outperformed those tuned with conventional methods.
arXiv Detail & Related papers (2024-09-18T10:06:28Z) - Benchmarking Complex Instruction-Following with Multiple Constraints Composition [72.82640456309821]
How to evaluate the ability of complex instruction-following of large language models (LLMs) has become a critical research problem.
Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints.
We propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints.
arXiv Detail & Related papers (2024-07-04T14:50:45Z) - Conifer: Improving Complex Constrained Instruction-Following Ability of Large Language Models [23.17547206140014]
We introduce Conifer, an instruction tuning dataset for large language models.
We train models with Conifer to follow instructions with complex constraints.
On several instruction-following benchmarks, our 7B model outperforms the state-of-the-art open-source 7B models.
arXiv Detail & Related papers (2024-04-03T15:55:39Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
We show that a structure called template-content structure (T-C structure) can reduce the possible space from exponential level to linear level.
We demonstrate that models can achieve task composition, further reducing the space needed to learn from linear to logarithmic.
arXiv Detail & Related papers (2023-10-09T06:57:45Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z) - A Preliminary Study of the Intrinsic Relationship between Complexity and
Alignment [90.7443414448245]
We propose Tree-Instruct to systematically enhance the instruction complexity in a controllable manner.
By adding a specified number of nodes to instructions' semantic trees, this approach not only yields new instruction data but also allows us to control the difficulty level of modified instructions.
arXiv Detail & Related papers (2023-08-10T16:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.