Single-Atom Verification of the Optimal Trade-Off between Speed and Cost in Shortcuts to Adiabaticity
- URL: http://arxiv.org/abs/2404.15922v2
- Date: Fri, 7 Jun 2024 03:32:05 GMT
- Title: Single-Atom Verification of the Optimal Trade-Off between Speed and Cost in Shortcuts to Adiabaticity
- Authors: J. -W. Zhang, J. -T. Bu, J. C. Li, Weiquan Meng, W. -Q. Ding, B. Wang, W. -F. Yuan, H. -J. Du, G. -Y. Ding, W. -J. Chen, L. Chen, F. Zhou, Zhenyu Xu, M. Feng,
- Abstract summary: shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed.
Our work helps understanding the fundamental constraints in shortcuts to adiabaticity and illuminates the potential of under-utilized phase spaces.
- Score: 2.4817943488237213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound within $s$-parameterized phase spaces. Our experiment is carried out in a single ultracold $^{40}$Ca$^{+}$ ion trapped in a harmonic potential. By exactly operating the quantum states of the ion, we execute the Landau-Zener model as an example, where the quantum speed limit as well as the cost are governed by the spectral gap. We witness that our proposed trade-off is indeed tight in scenarios involving both initially eigenstates and initially thermal equilibrium states. Our work helps understanding the fundamental constraints in shortcuts to adiabaticity and illuminates the potential of under-utilized phase spaces that have been traditionally overlooked.
Related papers
- Quantum Shortcut to Adiabaticity for State Preparation in a Finite-Sized Jaynes-Cummings Lattice [2.5688929644662926]
In noisy quantum systems, achieving high-fidelity state preparation using the adiabatic approach faces a dilemma.
We present a quantum shortcut to adiabaticity for state preparation in a finite-sized Jaynes-Cummings lattice by applying counter-diabatic (CD) driving.
arXiv Detail & Related papers (2024-02-19T19:44:45Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Acceleration and deceleration of quantum dynamics based on
inter-trajectory travel with fast-forward scaling theory [0.0]
We propose a method to accelerate quantum dynamics and obtain a target state in a shorter time relative to unmodified dynamics.
We extend the technique to accelerate quantum adiabatic evolution in order to rapidly generate a desired target state.
arXiv Detail & Related papers (2021-09-25T23:35:42Z) - Experimental implementation of precisely tailored light-matter
interaction via inverse engineering [5.131683740032632]
shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes.
Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system.
We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening.
arXiv Detail & Related papers (2021-01-29T08:17:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Smooth bang-bang shortcuts to adiabaticity for atomic transport in a
moving harmonic trap [3.53163169498295]
We propose smooth bang-bang protocols with near-minimal time, by setting the physical constraints on the relative displacement, speed, and acceleration.
It is found that the energy excitation and sloshing amplitude are significantly reduced at the expense of operation time.
arXiv Detail & Related papers (2020-02-26T16:49:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.