CORM: Cache Optimization with Recent Message for Large Language Model Inference
- URL: http://arxiv.org/abs/2404.15949v2
- Date: Fri, 21 Jun 2024 11:44:17 GMT
- Title: CORM: Cache Optimization with Recent Message for Large Language Model Inference
- Authors: Jincheng Dai, Zhuowei Huang, Haiyun Jiang, Chen Chen, Deng Cai, Wei Bi, Shuming Shi,
- Abstract summary: We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
- Score: 57.109354287786154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), despite their remarkable performance across a wide range of tasks, necessitate substantial GPU memory and consume significant computational resources. Beyond the memory taken up by model weights, the memory used by the KV cache rises linearly with sequence length, becoming a primary bottleneck for inference. In this paper, we introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint. Upon thorough investigation, we discover that in most Transformer models, (i) there is a striking similarity between adjacent tokens' query vectors, and (ii) the attention calculation of the current query can rely exclusively on the attention information of a small fraction of preceding queries. Based on these observations, we present CORM, a KV cache eviction policy that dynamically retains essential key-value pairs for inference without the need for model fine-tuning. Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70\% with negligible performance degradation across six tasks in LongBench. Furthermore, we demonstrate that CORM is compatible with GQA for further compression rate.
Related papers
- CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation [63.65323577445951]
We propose a novel approach called Cache Sparse Representation (CSR)
CSR transforms the dense Key-Value cache tensor into sparse indexes and weights, offering a more memory-efficient representation during LLM inference.
Our experiments demonstrate CSR achieves performance comparable to state-of-the-art KV cache quantization algorithms.
arXiv Detail & Related papers (2024-12-16T13:01:53Z) - SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
We introduce SCBench, a benchmark for evaluating long-context methods from a KV cachecentric perspective.
We provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs and Mamba-Attention hybrids.
Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n2) pre-filling perform robustly.
arXiv Detail & Related papers (2024-12-13T17:59:52Z) - XKV: Personalized KV Cache Memory Reduction for Long-Context LLM Inference [9.65524177141491]
Large Language Model (LLM) inference generates output tokens one-by-one, leading to many redundant computations.
KV-Cache framework makes a compromise between time and space complexities.
Existing studies reduce memory consumption by evicting some of cached data that have less important impact on inference accuracy.
We show that customizing the cache size for each layer in a personalized manner can yield a significant memory reduction.
arXiv Detail & Related papers (2024-12-08T11:32:08Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
Key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost.
We present PrefixKV, which reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration.
Our method achieves the state-of-the-art performance compared with others.
arXiv Detail & Related papers (2024-12-04T15:48:59Z) - A Method for Building Large Language Models with Predefined KV Cache Capacity [11.710667043543545]
The Bounded-Cache Transformer (BCT) addresses the excessive memory consumption issue in traditional KV caches.
By dynamically updating the key-value vector sequences, the BCT achieves efficient inference within limited cache capacity.
Experimental results demonstrate that the BCT significantly reduces memory usage while maintaining the model's inference quality.
arXiv Detail & Related papers (2024-11-24T11:30:00Z) - Inference-Friendly Models With MixAttention [7.103010772135246]
MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers.
Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks.
arXiv Detail & Related papers (2024-09-23T13:37:25Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
We introduce Elastic Cache, a novel strategy for efficient deployment of instruction-following large vision-language models.
We propose an importance-driven cache merging strategy to prune redundancy caches.
For instruction encoding, we utilize the frequency to evaluate the importance of caches.
Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation.
arXiv Detail & Related papers (2024-07-25T15:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.