CORM: Cache Optimization with Recent Message for Large Language Model Inference
- URL: http://arxiv.org/abs/2404.15949v2
- Date: Fri, 21 Jun 2024 11:44:17 GMT
- Title: CORM: Cache Optimization with Recent Message for Large Language Model Inference
- Authors: Jincheng Dai, Zhuowei Huang, Haiyun Jiang, Chen Chen, Deng Cai, Wei Bi, Shuming Shi,
- Abstract summary: We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
- Score: 57.109354287786154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), despite their remarkable performance across a wide range of tasks, necessitate substantial GPU memory and consume significant computational resources. Beyond the memory taken up by model weights, the memory used by the KV cache rises linearly with sequence length, becoming a primary bottleneck for inference. In this paper, we introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint. Upon thorough investigation, we discover that in most Transformer models, (i) there is a striking similarity between adjacent tokens' query vectors, and (ii) the attention calculation of the current query can rely exclusively on the attention information of a small fraction of preceding queries. Based on these observations, we present CORM, a KV cache eviction policy that dynamically retains essential key-value pairs for inference without the need for model fine-tuning. Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70\% with negligible performance degradation across six tasks in LongBench. Furthermore, we demonstrate that CORM is compatible with GQA for further compression rate.
Related papers
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - Inference-Friendly Models With MixAttention [7.103010772135246]
MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers.
Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks.
arXiv Detail & Related papers (2024-09-23T13:37:25Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
We introduce Elastic Cache, a novel strategy for efficient deployment of instruction-following large vision-language models.
We propose an importance-driven cache merging strategy to prune redundancy caches.
For instruction encoding, we utilize the frequency to evaluate the importance of caches.
Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation.
arXiv Detail & Related papers (2024-07-25T15:29:05Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
We propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks.
Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence.
We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets.
arXiv Detail & Related papers (2024-07-11T12:50:42Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
We introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens.
Our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens.
arXiv Detail & Related papers (2024-06-24T03:59:17Z) - KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization [34.824534775022144]
We propose Coupled Quantization (CQ) as a technique for KV cache compression.
CQ couples multiple key/value channels together to exploit their inter-dependency and encode the activations in a more information-efficient manner.
We demonstrate that CQ can preserve model quality with KV cache quantized down to 1-bit.
arXiv Detail & Related papers (2024-05-07T00:25:20Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
"Keyformer" is an innovative inference-time approach to mitigate the challenges associated with KV cache size and memory bandwidth utilization.
We evaluate Keyformer's performance across three foundational models: GPT-J, Cerebras-GPT, and MPT.
arXiv Detail & Related papers (2024-03-14T02:42:42Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
We introduce adaptive KV cache compression, a plug-and-play method that reduces the memory footprint of generative inference for Large Language Models (LLMs)
We conduct targeted profiling to discern the intrinsic structure of attention modules.
Based on the recognized structure, we then construct the KV cache in an adaptive manner: evicting long-range contexts on attention heads emphasizing local contexts, discarding non-special tokens on attention heads centered on special tokens, and only employing the standard KV cache for attention heads that broadly attend to all tokens.
arXiv Detail & Related papers (2023-10-03T05:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.