Classifying Human-Generated and AI-Generated Election Claims in Social Media
- URL: http://arxiv.org/abs/2404.16116v2
- Date: Fri, 26 Apr 2024 01:51:51 GMT
- Title: Classifying Human-Generated and AI-Generated Election Claims in Social Media
- Authors: Alphaeus Dmonte, Marcos Zampieri, Kevin Lybarger, Massimiliano Albanese, Genya Coulter,
- Abstract summary: Malicious actors may use social media to disseminate misinformation to undermine trust in the electoral process.
The emergence of Large Language Models (LLMs) exacerbates this issue by enabling malicious actors to generate misinformation at an unprecedented scale.
We present a novel taxonomy for characterizing election-related claims.
- Score: 8.990994727335064
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Politics is one of the most prevalent topics discussed on social media platforms, particularly during major election cycles, where users engage in conversations about candidates and electoral processes. Malicious actors may use this opportunity to disseminate misinformation to undermine trust in the electoral process. The emergence of Large Language Models (LLMs) exacerbates this issue by enabling malicious actors to generate misinformation at an unprecedented scale. Artificial intelligence (AI)-generated content is often indistinguishable from authentic user content, raising concerns about the integrity of information on social networks. In this paper, we present a novel taxonomy for characterizing election-related claims. This taxonomy provides an instrument for analyzing election-related claims, with granular categories related to jurisdiction, equipment, processes, and the nature of claims. We introduce ElectAI, a novel benchmark dataset that consists of 9,900 tweets, each labeled as human- or AI-generated. For AI-generated tweets, the specific LLM variant that produced them is specified. We annotated a subset of 1,550 tweets using the proposed taxonomy to capture the characteristics of election-related claims. We explored the capabilities of LLMs in extracting the taxonomy attributes and trained various machine learning models using ElectAI to distinguish between human- and AI-generated posts and identify the specific LLM variant.
Related papers
- ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
We introduce ElectionSim, an innovative election simulation framework based on large language models.
We present a million-level voter pool sampled from social media platforms to support accurate individual simulation.
We also introduce PPE, a poll-based presidential election benchmark to assess the performance of our framework under the U.S. presidential election scenario.
arXiv Detail & Related papers (2024-10-28T05:25:50Z) - Will Trump Win in 2024? Predicting the US Presidential Election via Multi-step Reasoning with Large Language Models [12.939107088730513]
Election prediction poses unique challenges, such as limited voter-level data, rapidly changing political landscapes, and the need to model complex human behavior.
We introduce a multi-step reasoning framework designed for political analysis.
Our approach is validated on real-world data from the American National Election Studies (ANES) 2016 and 2020.
We apply our framework to predict the outcome of the 2024 U.S. presidential election in advance.
arXiv Detail & Related papers (2024-10-21T06:18:53Z) - Identity-related Speech Suppression in Generative AI Content Moderation [2.812395851874055]
Generative AI systems now use such filters to keep undesired generated content from being created by or shown to users.
In this paper, we define and introduce measures of speech suppression, focusing on speech related to different identity groups incorrectly filtered by a range of content moderation APIs.
We find that identity-related speech is more likely to be incorrectly filtered than other speech except in the cases of a few non-marginalized groups.
arXiv Detail & Related papers (2024-09-09T14:34:51Z) - Large language models can consistently generate high-quality content for election disinformation operations [2.98293101034582]
Large language models have raised concerns about their potential use in generating compelling election disinformation at scale.
This study presents a two-part investigation into the capabilities of LLMs to automate stages of an election disinformation operation.
arXiv Detail & Related papers (2024-08-13T08:45:34Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - A Spanish dataset for Targeted Sentiment Analysis of political headlines [0.0]
This work addresses the task of Targeted Sentiment Analysis for the domain of news headlines, published by the main outlets during the 2019 Argentinean Presidential Elections.
We present a polarity dataset of 1,976 headlines mentioning candidates in the 2019 elections at the target level.
Preliminary experiments with state-of-the-art classification algorithms based on pre-trained linguistic models suggest that target information is helpful for this task.
arXiv Detail & Related papers (2022-08-30T01:30:30Z) - An Attribute-Aligned Strategy for Learning Speech Representation [57.891727280493015]
We propose an attribute-aligned learning strategy to derive speech representation that can flexibly address these issues by attribute-selection mechanism.
Specifically, we propose a layered-representation variational autoencoder (LR-VAE), which factorizes speech representation into attribute-sensitive nodes.
Our proposed method achieves competitive performances on identity-free SER and a better performance on emotionless SV.
arXiv Detail & Related papers (2021-06-05T06:19:14Z) - Inferring Political Preferences from Twitter [0.0]
Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate.
During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians.
In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning.
arXiv Detail & Related papers (2020-07-21T05:20:43Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.