3D Human Pose Estimation with Occlusions: Introducing BlendMimic3D Dataset and GCN Refinement
- URL: http://arxiv.org/abs/2404.16136v1
- Date: Wed, 24 Apr 2024 18:49:37 GMT
- Title: 3D Human Pose Estimation with Occlusions: Introducing BlendMimic3D Dataset and GCN Refinement
- Authors: Filipa Lino, Carlos Santiago, Manuel Marques,
- Abstract summary: This work identifies and addresses a gap in the current state of the art in 3D Human Pose Estimation (HPE)
We introduce our novel BlendMimic3D dataset, designed to mimic real-world situations where occlusions occur.
We also propose a 3D pose refinement block, employing a Graph Convolutional Network (GCN) to enhance pose representation through a graph model.
- Score: 6.858859328420893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of 3D Human Pose Estimation (HPE), accurately estimating human pose, especially in scenarios with occlusions, is a significant challenge. This work identifies and addresses a gap in the current state of the art in 3D HPE concerning the scarcity of data and strategies for handling occlusions. We introduce our novel BlendMimic3D dataset, designed to mimic real-world situations where occlusions occur for seamless integration in 3D HPE algorithms. Additionally, we propose a 3D pose refinement block, employing a Graph Convolutional Network (GCN) to enhance pose representation through a graph model. This GCN block acts as a plug-and-play solution, adaptable to various 3D HPE frameworks without requiring retraining them. By training the GCN with occluded data from BlendMimic3D, we demonstrate significant improvements in resolving occluded poses, with comparable results for non-occluded ones. Project web page is available at https://blendmimic3d.github.io/BlendMimic3D/.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Occlusion Resilient 3D Human Pose Estimation [52.49366182230432]
Occlusions remain one of the key challenges in 3D body pose estimation from single-camera video sequences.
We demonstrate the effectiveness of this approach compared to state-of-the-art techniques that infer poses from single-camera sequences.
arXiv Detail & Related papers (2024-02-16T19:29:43Z) - 3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose
Estimation [28.24765523800196]
We propose 3D-aware Neural Body Fitting (3DNBF) for 3D human pose estimation.
In particular, we propose a generative model of deep features based on a volumetric human representation with Gaussian ellipsoidal kernels emitting 3D pose-dependent feature vectors.
The neural features are trained with contrastive learning to become 3D-aware and hence to overcome the 2D-3D ambiguity.
arXiv Detail & Related papers (2023-08-19T22:41:00Z) - Occlusion Robust 3D Human Pose Estimation with StridedPoseGraphFormer
and Data Augmentation [69.49430149980789]
We show that our proposed method compares favorably with the state-of-the-art (SoA)
Our experimental results also reveal that in the absence of any occlusion handling mechanism, the performance of SoA 3D HPE methods degrades significantly when they encounter occlusion.
arXiv Detail & Related papers (2023-04-24T13:05:13Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Reconstructing Hand-Object Interactions in the Wild [71.16013096764046]
We propose an optimization-based procedure which does not require direct 3D supervision.
We exploit all available related data (2D bounding boxes, 2D hand keypoints, 2D instance masks, 3D object models, 3D in-the-lab MoCap) to provide constraints for the 3D reconstruction.
Our method produces compelling reconstructions on the challenging in-the-wild data from the EPIC Kitchens and the 100 Days of Hands datasets.
arXiv Detail & Related papers (2020-12-17T18:59:58Z) - Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh
Recovery from a 2D Human Pose [70.23652933572647]
We propose a novel graph convolutional neural network (GraphCNN)-based system that estimates the 3D coordinates of human mesh vertices directly from the 2D human pose.
We show that our Pose2Mesh outperforms the previous 3D human pose and mesh estimation methods on various benchmark datasets.
arXiv Detail & Related papers (2020-08-20T16:01:56Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.