AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
- URL: http://arxiv.org/abs/2404.16233v2
- Date: Tue, 30 Apr 2024 21:09:27 GMT
- Title: AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
- Authors: Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff, George Karypis,
- Abstract summary: AutoMM enables fine-tuning of foundation models with just three lines of code.
AutoMM offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation.
- Score: 31.816755598468077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed specifically for multimodal learning. Distinguished by its exceptional ease of use, AutoMM enables fine-tuning of foundation models with just three lines of code. Supporting various modalities including image, text, and tabular data, both independently and in combination, the library offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation. Experiments across diverse datasets and tasks showcases AutoMM's superior performance in basic classification and regression tasks compared to existing AutoML tools, while also demonstrating competitive results in advanced tasks, aligning with specialized toolboxes designed for such purposes.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - AutoM3L: An Automated Multimodal Machine Learning Framework with Large Language Models [6.496539724366041]
We introduce AutoM3L, an innovative Automated Multimodal Machine Learning framework.
AutoM3L comprehends data modalities and selects appropriate models based on user requirements.
We evaluate the performance of AutoM3L on six diverse multimodal datasets.
arXiv Detail & Related papers (2024-08-01T16:01:51Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Mining Robust Default Configurations for Resource-constrained AutoML [18.326426020906215]
We present a novel method of selecting performant configurations for a given task by performing offline autoML and mining over a diverse set of tasks.
We show that our approach is effective for warm-starting existing autoML platforms.
arXiv Detail & Related papers (2022-02-20T23:08:04Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlion is an open-source machine learning library for time series.
It features a unified interface for models and datasets for anomaly detection and forecasting.
Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production.
arXiv Detail & Related papers (2021-09-20T02:03:43Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data [120.2298620652828]
We introduce AutoGluon-Tabular, an open-source AutoML framework that requires only a single line of Python to train highly accurate machine learning models.
Tests on a suite of 50 classification and regression tasks from Kaggle and the OpenML AutoML Benchmark reveal that AutoGluon is faster, more robust, and much more accurate.
arXiv Detail & Related papers (2020-03-13T23:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.