Multimodal Information Interaction for Medical Image Segmentation
- URL: http://arxiv.org/abs/2404.16371v1
- Date: Thu, 25 Apr 2024 07:21:14 GMT
- Title: Multimodal Information Interaction for Medical Image Segmentation
- Authors: Xinxin Fan, Lin Liu, Haoran Zhang,
- Abstract summary: We introduce an innovative Multimodal Information Cross Transformer (MicFormer)
It queries features from one modality and retrieves corresponding responses from another, facilitating effective communication between bimodal features.
Compared to other multimodal segmentation techniques, our method outperforms by margins of 2.83 and 4.23, respectively.
- Score: 24.024848382458767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of multimodal data in assisted diagnosis and segmentation has emerged as a prominent area of interest in current research. However, one of the primary challenges is how to effectively fuse multimodal features. Most of the current approaches focus on the integration of multimodal features while ignoring the correlation and consistency between different modal features, leading to the inclusion of potentially irrelevant information. To address this issue, we introduce an innovative Multimodal Information Cross Transformer (MicFormer), which employs a dual-stream architecture to simultaneously extract features from each modality. Leveraging the Cross Transformer, it queries features from one modality and retrieves corresponding responses from another, facilitating effective communication between bimodal features. Additionally, we incorporate a deformable Transformer architecture to expand the search space. We conducted experiments on the MM-WHS dataset, and in the CT-MRI multimodal image segmentation task, we successfully improved the whole-heart segmentation DICE score to 85.57 and MIoU to 75.51. Compared to other multimodal segmentation techniques, our method outperforms by margins of 2.83 and 4.23, respectively. This demonstrates the efficacy of MicFormer in integrating relevant information between different modalities in multimodal tasks. These findings hold significant implications for multimodal image tasks, and we believe that MicFormer possesses extensive potential for broader applications across various domains. Access to our method is available at https://github.com/fxxJuses/MICFormer
Related papers
- StitchFusion: Weaving Any Visual Modalities to Enhance Multimodal Semantic Segmentation [63.31007867379312]
We propose StitchFusion, a framework that integrates large-scale pre-trained models directly as encoders and feature fusers.
We introduce a multi-directional adapter module (MultiAdapter) to enable cross-modal information transfer during encoding.
Our model achieves state-of-the-art performance on four multi-modal segmentation datasets with minimal additional parameters.
arXiv Detail & Related papers (2024-08-02T15:41:16Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Multimodal Prompt Transformer with Hybrid Contrastive Learning for
Emotion Recognition in Conversation [9.817888267356716]
multimodal Emotion Recognition in Conversation (ERC) faces two problems.
Deep emotion cues extraction was performed on modalities with strong representation ability.
Feature filters were designed as multimodal prompt information for modalities with weak representation ability.
MPT embeds multimodal fusion information into each attention layer of the Transformer.
arXiv Detail & Related papers (2023-10-04T13:54:46Z) - MMSFormer: Multimodal Transformer for Material and Semantic Segmentation [16.17270247327955]
We propose a novel fusion strategy that can effectively fuse information from different modality combinations.
We also propose a new model named Multi-Modal TransFormer (MMSFormer) that incorporates the proposed fusion strategy.
MMSFormer outperforms current state-of-the-art models on three different datasets.
arXiv Detail & Related papers (2023-09-07T20:07:57Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
We propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis.
Our model outperforms existing approaches on unaligned multimodal sequences and has strong performance on aligned multimodal sequences.
arXiv Detail & Related papers (2022-06-16T07:47:57Z) - AttX: Attentive Cross-Connections for Fusion of Wearable Signals in
Emotion Recognition [15.21696076393078]
Cross-modal attentive connections is a new dynamic and effective technique for multimodal representation learning from wearable data.
We perform extensive experiments on three public multimodal wearable datasets, WESAD, SWELL-KW, and CASE.
Our method can result in superior or competitive performance to state-of-the-art and outperform a variety of baseline uni-modal and classical multimodal methods.
arXiv Detail & Related papers (2022-06-09T17:18:33Z) - Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge
Graph Completion [112.27103169303184]
Multimodal Knowledge Graphs (MKGs) organize visual-text factual knowledge.
MKGformer can obtain SOTA performance on four datasets of multimodal link prediction, multimodal RE, and multimodal NER.
arXiv Detail & Related papers (2022-05-04T23:40:04Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.