AudioScenic: Audio-Driven Video Scene Editing
- URL: http://arxiv.org/abs/2404.16581v1
- Date: Thu, 25 Apr 2024 12:55:58 GMT
- Title: AudioScenic: Audio-Driven Video Scene Editing
- Authors: Kaixin Shen, Ruijie Quan, Linchao Zhu, Jun Xiao, Yi Yang,
- Abstract summary: We introduce AudioScenic, an audio-driven framework designed for video scene editing.
AudioScenic integrates audio semantics into the visual scene through a temporal-aware audio semantic injection process.
We present an audio Magnitude Modulator module that adjusts the temporal dynamics of the scene in response to changes in audio magnitude.
Second, the audio Frequency Fuser module is designed to ensure temporal consistency by aligning the frequency of the audio with the dynamics of the video scenes.
- Score: 55.098754835213995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-driven visual scene editing endeavors to manipulate the visual background while leaving the foreground content unchanged, according to the given audio signals. Unlike current efforts focusing primarily on image editing, audio-driven video scene editing has not been extensively addressed. In this paper, we introduce AudioScenic, an audio-driven framework designed for video scene editing. AudioScenic integrates audio semantics into the visual scene through a temporal-aware audio semantic injection process. As our focus is on background editing, we further introduce a SceneMasker module, which maintains the integrity of the foreground content during the editing process. AudioScenic exploits the inherent properties of audio, namely, audio magnitude and frequency, to guide the editing process, aiming to control the temporal dynamics and enhance the temporal consistency. First, we present an audio Magnitude Modulator module that adjusts the temporal dynamics of the scene in response to changes in audio magnitude, enhancing the visual dynamics. Second, the audio Frequency Fuser module is designed to ensure temporal consistency by aligning the frequency of the audio with the dynamics of the video scenes, thus improving the overall temporal coherence of the edited videos. These integrated features enable AudioScenic to not only enhance visual diversity but also maintain temporal consistency throughout the video. We present a new metric named temporal score for more comprehensive validation of temporal consistency. We demonstrate substantial advancements of AudioScenic over competing methods on DAVIS and Audioset datasets.
Related papers
- Language-Guided Joint Audio-Visual Editing via One-Shot Adaptation [56.92841782969847]
We introduce a novel task called language-guided joint audio-visual editing.
Given an audio and image pair of a sounding event, this task aims at generating new audio-visual content by editing the given sounding event conditioned on the language guidance.
We propose a new diffusion-based framework for joint audio-visual editing and introduce two key ideas.
arXiv Detail & Related papers (2024-10-09T22:02:30Z) - Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis [28.172213291270868]
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience.
Video-to-Audio (V2A) presents inherent challenges related to audio-visual synchronization.
We construct a controllable video-to-audio model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals.
arXiv Detail & Related papers (2024-09-10T01:07:20Z) - SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis [9.118448725265669]
One of the most time-consuming steps when designing sound is synchronizing audio with video.
In video games and animations, no reference audio exists, requiring manual annotation of event timings from the video.
We propose a system to extract repetitive actions onsets from a video, which are then used to condition a diffusion model trained to generate a new synchronized sound effects audio track.
arXiv Detail & Related papers (2023-10-23T18:01:36Z) - CATR: Combinatorial-Dependence Audio-Queried Transformer for
Audio-Visual Video Segmentation [43.562848631392384]
Audio-visual video segmentation aims to generate pixel-level maps of sound-producing objects within image frames.
We propose a decoupled audio-video dependence combining audio and video features from their respective temporal and spatial dimensions.
arXiv Detail & Related papers (2023-09-18T12:24:02Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - Soundini: Sound-Guided Diffusion for Natural Video Editing [29.231939578629785]
We propose a method for adding sound-guided visual effects to specific regions of videos with a zero-shot setting.
Our work is the first to explore sound-guided natural video editing from various sound sources with sound-specialized properties.
arXiv Detail & Related papers (2023-04-13T20:56:53Z) - Audio-Visual Contrastive Learning with Temporal Self-Supervision [84.11385346896412]
We propose a self-supervised learning approach for videos that learns representations of both the RGB frames and the accompanying audio without human supervision.
To leverage the temporal and aural dimension inherent to videos, our method extends temporal self-supervision to the audio-visual setting.
arXiv Detail & Related papers (2023-02-15T15:00:55Z) - Visually-Aware Audio Captioning With Adaptive Audio-Visual Attention [54.4258176885084]
How to accurately recognize ambiguous sounds is a major challenge for audio captioning.
We propose visually-aware audio captioning, which makes use of visual information to help the description of ambiguous sounding objects.
Our proposed method achieves state-of-the-art results on machine translation metrics.
arXiv Detail & Related papers (2022-10-28T22:45:41Z) - Visual Acoustic Matching [92.91522122739845]
We introduce the visual acoustic matching task, in which an audio clip is transformed to sound like it was recorded in a target environment.
Given an image of the target environment and a waveform for the source audio, the goal is to re-synthesize the audio to match the target room acoustics as suggested by its visible geometry and materials.
arXiv Detail & Related papers (2022-02-14T17:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.