A generalization of quantum pair state transfer
- URL: http://arxiv.org/abs/2404.16654v2
- Date: Mon, 29 Jul 2024 02:20:42 GMT
- Title: A generalization of quantum pair state transfer
- Authors: Sooyeong Kim, Hermie Monterde, Bahman Ahmadi, Ada Chan, Stephen Kirkland, Sarah Plosker,
- Abstract summary: An $s$-pair state in a graph is a quantum state of the form $mathbfe_u+smathbfe_v$.
We develop the theory of perfect $s$-pair state transfer in continuous quantum walks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An $s$-pair state in a graph is a quantum state of the form $\mathbf{e}_u+s\mathbf{e}_v$, where $u$ and $v$ are vertices in the graph and $s$ is a non-zero complex number. If $s=-1$ (resp., $s=1$), then such a state is called a pair state (resp. plus state). In this paper, we develop the theory of perfect $s$-pair state transfer in continuous quantum walks, where the Hamiltonian is taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize perfect $s$-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs admitting vertex perfect state transfer. We construct infinite families of graphs with perfect $s$-pair state transfer using quotient graphs and graphs that admit fractional revival. We provide necessary and sufficient conditions such that perfect state transfer between vertices in the line graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus states formed by corresponding edges in the graph relative to the signless Laplacian matrix. Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian products relative to the adjacency matrix.
Related papers
- A Graph is Worth $K$ Words: Euclideanizing Graph using Pure Transformer [47.25114679486907]
We introduce GraphsGPT, featuring a Graph2Seq encoder that transforms Non-Euclidean graphs into learnable Graph Words.
A GraphGPT decoder reconstructs the original graph from Graph Words to ensure information equivalence.
arXiv Detail & Related papers (2024-02-04T12:29:40Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
Graphs with homophily-prone edges tend to connect nodes with the same class.
Heterophily-prone edges tend to build relationships between nodes with different classes.
Existing GNNs only take the original graph during training.
arXiv Detail & Related papers (2023-06-13T08:06:10Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
We show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights.
We propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs.
Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
arXiv Detail & Related papers (2022-08-18T09:19:01Z) - $n$-qubit states with maximum entanglement across all bipartitions: A
graph state approach [0.0]
We show that a subset of the 'graph states' satisfy this condition, hence providing a recipe for constructing $k$-uniform states.
Finding recipes for construction of $k$-uniform states using graph states is useful since every graph state can be constructed starting from a product state.
arXiv Detail & Related papers (2022-01-14T19:00:09Z) - Quantum state transfer between twins in weighted graphs [0.0]
We explore the role of twin vertices in quantum state transfer.
We provide characterizations of periodicity, perfect state transfer, and pretty good state transfer.
As an application, we provide characterizations of all simple unweighted double cones on regular graphs that exhibit periodicity, perfect state transfer, and pretty good state transfer.
arXiv Detail & Related papers (2022-01-08T01:15:24Z) - Perfect State Transfer in Weighted Cubelike Graphs [0.0]
A continuous-time quantum random walk describes the motion of a quantum mechanical particle on a graph.
We generalize the PST or periodicity of cubelike graphs to that of weighted cubelike graphs.
arXiv Detail & Related papers (2021-09-26T13:44:44Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Laplacian State Transfer on Graphs with an Edge Perturbation Between
Twin Vertices [0.0]
We consider quantum state transfer relative to the Laplacian matrix of a graph.
We investigate the existence of quantum state transfer between a pair of twin vertices in a graph when the edge between the vertices is perturbed.
arXiv Detail & Related papers (2021-09-11T15:48:18Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z) - Perfect State Transfer on Oriented Graphs [0.0]
We study the phenomena, unique to oriented graphs, of multiple state transfer.
We give a characterization of multiple state transfer, and a new example of a graph where it occurs.
arXiv Detail & Related papers (2020-02-11T20:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.