NTIRE 2024 Quality Assessment of AI-Generated Content Challenge
- URL: http://arxiv.org/abs/2404.16687v2
- Date: Tue, 7 May 2024 16:13:05 GMT
- Title: NTIRE 2024 Quality Assessment of AI-Generated Content Challenge
- Authors: Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, Haoning Wu, Yixuan Gao, Yuqin Cao, Zicheng Zhang, Xiele Wu, Radu Timofte, Fei Peng, Huiyuan Fu, Anlong Ming, Chuanming Wang, Huadong Ma, Shuai He, Zifei Dou, Shu Chen, Huacong Zhang, Haiyi Xie, Chengwei Wang, Baoying Chen, Jishen Zeng, Jianquan Yang, Weigang Wang, Xi Fang, Xiaoxin Lv, Jun Yan, Tianwu Zhi, Yabin Zhang, Yaohui Li, Yang Li, Jingwen Xu, Jianzhao Liu, Yiting Liao, Junlin Li, Zihao Yu, Yiting Lu, Xin Li, Hossein Motamednia, S. Farhad Hosseini-Benvidi, Fengbin Guan, Ahmad Mahmoudi-Aznaveh, Azadeh Mansouri, Ganzorig Gankhuyag, Kihwan Yoon, Yifang Xu, Haotian Fan, Fangyuan Kong, Shiling Zhao, Weifeng Dong, Haibing Yin, Li Zhu, Zhiling Wang, Bingchen Huang, Avinab Saha, Sandeep Mishra, Shashank Gupta, Rajesh Sureddi, Oindrila Saha, Luigi Celona, Simone Bianco, Paolo Napoletano, Raimondo Schettini, Junfeng Yang, Jing Fu, Wei Zhang, Wenzhi Cao, Limei Liu, Han Peng, Weijun Yuan, Zhan Li, Yihang Cheng, Yifan Deng, Haohui Li, Bowen Qu, Yao Li, Shuqing Luo, Shunzhou Wang, Wei Gao, Zihao Lu, Marcos V. Conde, Xinrui Wang, Zhibo Chen, Ruling Liao, Yan Ye, Qiulin Wang, Bing Li, Zhaokun Zhou, Miao Geng, Rui Chen, Xin Tao, Xiaoyu Liang, Shangkun Sun, Xingyuan Ma, Jiaze Li, Mengduo Yang, Haoran Xu, Jie Zhou, Shiding Zhu, Bohan Yu, Pengfei Chen, Xinrui Xu, Jiabin Shen, Zhichao Duan, Erfan Asadi, Jiahe Liu, Qi Yan, Youran Qu, Xiaohui Zeng, Lele Wang, Renjie Liao,
- Abstract summary: The challenge is divided into the image track and the video track.
The winning methods in both tracks have demonstrated superior prediction performance on AIGC.
- Score: 141.37864527005226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reports on the NTIRE 2024 Quality Assessment of AI-Generated Content Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2024. This challenge is to address a major challenge in the field of image and video processing, namely, Image Quality Assessment (IQA) and Video Quality Assessment (VQA) for AI-Generated Content (AIGC). The challenge is divided into the image track and the video track. The image track uses the AIGIQA-20K, which contains 20,000 AI-Generated Images (AIGIs) generated by 15 popular generative models. The image track has a total of 318 registered participants. A total of 1,646 submissions are received in the development phase, and 221 submissions are received in the test phase. Finally, 16 participating teams submitted their models and fact sheets. The video track uses the T2VQA-DB, which contains 10,000 AI-Generated Videos (AIGVs) generated by 9 popular Text-to-Video (T2V) models. A total of 196 participants have registered in the video track. A total of 991 submissions are received in the development phase, and 185 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. Some methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on AIGC.
Related papers
- AIM 2024 Challenge on Video Super-Resolution Quality Assessment: Methods and Results [76.64868221556145]
This paper presents the Video Super-Resolution (SR) Quality Assessment (QA) Challenge that was part of the Advances in Image Manipulation (AIM) workshop.
The task of this challenge was to develop an objective QA method for videos upscaled 2x and 4x by modern image- and video-SR algorithms.
The goal was to advance the state-of-the-art in SR QA, which had proven to be a challenging problem with limited applicability of traditional QA methods.
arXiv Detail & Related papers (2024-10-05T16:42:23Z) - NICE: CVPR 2023 Challenge on Zero-shot Image Captioning [149.28330263581012]
NICE project is designed to challenge the computer vision community to develop robust image captioning models.
Report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries.
arXiv Detail & Related papers (2023-09-05T05:32:19Z) - NTIRE 2023 Quality Assessment of Video Enhancement Challenge [97.809937484099]
This paper reports on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge.
The challenge is to address a major challenge in the field of video processing, namely, video quality assessment (VQA) for enhanced videos.
The challenge has a total of 167 registered participants.
arXiv Detail & Related papers (2023-07-19T02:33:42Z) - NTIRE 2022 Challenge on Perceptual Image Quality Assessment [90.04931572825859]
This paper reports on the NTIRE 2022 challenge on perceptual image quality assessment (IQA)
The challenge is held to address the emerging challenge of IQA by perceptual image processing algorithms.
The winning method can demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2022-06-23T13:36:49Z) - NTIRE 2021 Challenge on Perceptual Image Quality Assessment [128.83256694901726]
This paper reports on the NTIRE 2021 challenge on perceptual image quality assessment (IQA)
It was held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) at CVPR 2021.
As a new type of image processing technology, perceptual image processing algorithms based on Generative Adversarial Networks (GAN) have produced images with more realistic textures.
arXiv Detail & Related papers (2021-05-07T05:36:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.