Learning Visuotactile Skills with Two Multifingered Hands
- URL: http://arxiv.org/abs/2404.16823v2
- Date: Wed, 22 May 2024 22:44:28 GMT
- Title: Learning Visuotactile Skills with Two Multifingered Hands
- Authors: Toru Lin, Yu Zhang, Qiyang Li, Haozhi Qi, Brent Yi, Sergey Levine, Jitendra Malik,
- Abstract summary: We explore learning from human demonstrations using a bimanual system with multifingered hands and visuotactile data.
Our results mark a promising step forward in bimanual multifingered manipulation from visuotactile data.
- Score: 80.99370364907278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming to replicate human-like dexterity, perceptual experiences, and motion patterns, we explore learning from human demonstrations using a bimanual system with multifingered hands and visuotactile data. Two significant challenges exist: the lack of an affordable and accessible teleoperation system suitable for a dual-arm setup with multifingered hands, and the scarcity of multifingered hand hardware equipped with touch sensing. To tackle the first challenge, we develop HATO, a low-cost hands-arms teleoperation system that leverages off-the-shelf electronics, complemented with a software suite that enables efficient data collection; the comprehensive software suite also supports multimodal data processing, scalable policy learning, and smooth policy deployment. To tackle the latter challenge, we introduce a novel hardware adaptation by repurposing two prosthetic hands equipped with touch sensors for research. Using visuotactile data collected from our system, we learn skills to complete long-horizon, high-precision tasks which are difficult to achieve without multifingered dexterity and touch feedback. Furthermore, we empirically investigate the effects of dataset size, sensing modality, and visual input preprocessing on policy learning. Our results mark a promising step forward in bimanual multifingered manipulation from visuotactile data. Videos, code, and datasets can be found at https://toruowo.github.io/hato/ .
Related papers
- Twisting Lids Off with Two Hands [82.21668778600414]
We show how policies trained in simulation can be effectively and efficiently transferred to the real world.
Specifically, we consider the problem of twisting lids of various bottle-like objects with two hands.
This is the first sim-to-real RL system that enables such capabilities on bimanual multi-fingered hands.
arXiv Detail & Related papers (2024-03-04T18:59:30Z) - BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics [50.88842027976421]
We propose BOTH57M, a novel multi-modal dataset for two-hand motion generation.
Our dataset includes accurate motion tracking for the human body and hands.
We also provide a strong baseline method, BOTH2Hands, for the novel task.
arXiv Detail & Related papers (2023-12-13T07:30:19Z) - MimicTouch: Leveraging Multi-modal Human Tactile Demonstrations for Contact-rich Manipulation [8.738889129462013]
"MimicTouch" is a novel framework for learning policies directly from demonstrations provided by human users with their hands.
The key innovations are i) a human tactile data collection system which collects multi-modal tactile dataset for learning human's tactile-guided control strategy, and ii) an imitation learning-based framework for learning human's tactile-guided control strategy through such data.
arXiv Detail & Related papers (2023-10-25T18:34:06Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - All the Feels: A dexterous hand with large-area tactile sensing [23.631099756265996]
High cost and lack of reliability has precluded the widespread adoption of dexterous hands in robotics.
The lack of a viable tactile sensor capable of sensing over the entire area of the hand impedes the rich, low-level feedback that would improve learning of dexterous manipulation skills.
This paper introduces an inexpensive, modular, robust, and scalable platform -- the DManus.
arXiv Detail & Related papers (2022-10-27T17:58:43Z) - Learning to Detect Slip with Barometric Tactile Sensors and a Temporal
Convolutional Neural Network [7.346580429118843]
We present a learning-based method to detect slip using barometric tactile sensors.
We train a temporal convolution neural network to detect slip, achieving high detection accuracies.
We argue that barometric tactile sensing technology, combined with data-driven learning, is suitable for many manipulation tasks such as slip compensation.
arXiv Detail & Related papers (2022-02-19T08:21:56Z) - WaveGlove: Transformer-based hand gesture recognition using multiple
inertial sensors [0.0]
Hand Gesture Recognition (HGR) based on inertial data has grown considerably in recent years.
In this work we explore the benefits of using multiple inertial sensors.
arXiv Detail & Related papers (2021-05-04T20:50:53Z) - Under Pressure: Learning to Detect Slip with Barometric Tactile Sensors [7.35805050004643]
We present a learning-based method to detect slip using barometric tactile sensors.
We are able to achieve slip detection accuracies of greater than 91%.
We show that barometric tactile sensing technology, combined with data-driven learning, is potentially suitable for many complex manipulation tasks.
arXiv Detail & Related papers (2021-03-24T19:29:03Z) - Learning Multi-Arm Manipulation Through Collaborative Teleoperation [63.35924708783826]
Imitation Learning (IL) is a powerful paradigm to teach robots to perform manipulation tasks.
Many real-world tasks require multiple arms, such as lifting a heavy object or assembling a desk.
We present Multi-Arm RoboTurk (MART), a multi-user data collection platform that allows multiple remote users to simultaneously teleoperate a set of robotic arms.
arXiv Detail & Related papers (2020-12-12T05:43:43Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.