A Catalog of Transformations to Remove Smells From Natural Language Tests
- URL: http://arxiv.org/abs/2404.16992v1
- Date: Thu, 25 Apr 2024 19:23:24 GMT
- Title: A Catalog of Transformations to Remove Smells From Natural Language Tests
- Authors: Manoel Aranda, Naelson Oliveira, Elvys Soares, Márcio Ribeiro, Davi Romão, Ullyanne Patriota, Rohit Gheyi, Emerson Souza, Ivan Machado,
- Abstract summary: Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification.
This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques.
- Score: 1.260984934917191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
Related papers
- Automatic Generation of Behavioral Test Cases For Natural Language Processing Using Clustering and Prompting [6.938766764201549]
This paper introduces an automated approach to develop test cases by exploiting the power of large language models and statistical techniques.
We analyze the behavioral test profiles across four different classification algorithms and discuss the limitations and strengths of those models.
arXiv Detail & Related papers (2024-07-31T21:12:21Z) - Evaluating Large Language Models in Detecting Test Smells [1.5691664836504473]
The presence of test smells can negatively impact the maintainability and reliability of software.
This study aims to evaluate the capability of Large Language Models (LLMs) in automatically detecting test smells.
arXiv Detail & Related papers (2024-07-27T14:00:05Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - Re-ReST: Reflection-Reinforced Self-Training for Language Agents [101.22559705696885]
Self-training in language agents can generate supervision from the agent itself.
We present Reflection-Reinforced Self-Training (Re-ReST), which uses a textitreflector to refine low-quality generated samples.
arXiv Detail & Related papers (2024-06-03T16:21:38Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
We introduce MuTAP for improving the effectiveness of test cases generated by Large Language Models (LLMs) in terms of revealing bugs.
MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs)
Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets.
arXiv Detail & Related papers (2023-08-31T08:48:31Z) - Manual Tests Do Smell! Cataloging and Identifying Natural Language Test
Smells [1.43994708364763]
Test smells indicate potential problems in the design and implementation of automated software tests.
This study aims to contribute to a catalog of test smells for manual tests.
arXiv Detail & Related papers (2023-08-02T19:05:36Z) - Machine Learning-Based Test Smell Detection [17.957877801382413]
Test smells are symptoms of sub-optimal design choices adopted when developing test cases.
We propose the design and experimentation of a novel test smell detection approach based on machine learning to detect four test smells.
arXiv Detail & Related papers (2022-08-16T07:33:15Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
We propose a multilingual robustness evaluation platform for NLP tasks (TextFlint)
It incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis.
TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness.
arXiv Detail & Related papers (2021-03-21T17:20:38Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing.
We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks.
arXiv Detail & Related papers (2020-06-22T21:56:14Z) - Information-Theoretic Probing for Linguistic Structure [74.04862204427944]
We propose an information-theoretic operationalization of probing as estimating mutual information.
We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research.
arXiv Detail & Related papers (2020-04-07T01:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.