2M-NER: Contrastive Learning for Multilingual and Multimodal NER with Language and Modal Fusion
- URL: http://arxiv.org/abs/2404.17122v1
- Date: Fri, 26 Apr 2024 02:34:31 GMT
- Title: 2M-NER: Contrastive Learning for Multilingual and Multimodal NER with Language and Modal Fusion
- Authors: Dongsheng Wang, Xiaoqin Feng, Zeming Liu, Chuan Wang,
- Abstract summary: We construct a large-scale MMNER dataset with four languages (English, French, German and Spanish) and two modalities (text and image)
We introduce a new model called 2M-NER, which aligns the text and image representations using contrastive learning and integrates a multimodal collaboration module.
Our model achieves the highest F1 score in multilingual and multimodal NER tasks compared to some comparative and representative baselines.
- Score: 9.038363543966263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity recognition (NER) is a fundamental task in natural language processing that involves identifying and classifying entities in sentences into pre-defined types. It plays a crucial role in various research fields, including entity linking, question answering, and online product recommendation. Recent studies have shown that incorporating multilingual and multimodal datasets can enhance the effectiveness of NER. This is due to language transfer learning and the presence of shared implicit features across different modalities. However, the lack of a dataset that combines multilingualism and multimodality has hindered research exploring the combination of these two aspects, as multimodality can help NER in multiple languages simultaneously. In this paper, we aim to address a more challenging task: multilingual and multimodal named entity recognition (MMNER), considering its potential value and influence. Specifically, we construct a large-scale MMNER dataset with four languages (English, French, German and Spanish) and two modalities (text and image). To tackle this challenging MMNER task on the dataset, we introduce a new model called 2M-NER, which aligns the text and image representations using contrastive learning and integrates a multimodal collaboration module to effectively depict the interactions between the two modalities. Extensive experimental results demonstrate that our model achieves the highest F1 score in multilingual and multimodal NER tasks compared to some comparative and representative baselines. Additionally, in a challenging analysis, we discovered that sentence-level alignment interferes a lot with NER models, indicating the higher level of difficulty in our dataset.
Related papers
- FonMTL: Towards Multitask Learning for the Fon Language [1.9370453715137865]
We present the first explorative approach to multitask learning, for model capabilities enhancement in Natural Language Processing for the Fon language.
We leverage two language model heads as encoders to build shared representations for the inputs, and we use linear layers blocks for classification relative to each task.
Our results on the NER and POS tasks for Fon, show competitive (or better) performances compared to several multilingual pretrained language models finetuned on single tasks.
arXiv Detail & Related papers (2023-08-28T03:26:21Z) - UniDoc: A Universal Large Multimodal Model for Simultaneous Text
Detection, Recognition, Spotting and Understanding [93.92313947913831]
We introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities.
To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.
arXiv Detail & Related papers (2023-08-19T17:32:34Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
We extend the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages.
Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals.
We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the Natural Language Understanding tasks of intent detection and slot labelling.
arXiv Detail & Related papers (2022-12-20T17:34:25Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
We investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data.
We propose two metrics for automatically removing such translations from the resulting datasets.
In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning.
arXiv Detail & Related papers (2022-10-24T11:41:20Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity
Recognition [15.805414696789796]
We present MultiCoNER, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages.
This dataset is designed to represent contemporary challenges in NER, including low-context scenarios.
arXiv Detail & Related papers (2022-08-30T20:45:54Z) - Unsupervised Multimodal Language Representations using Convolutional
Autoencoders [5.464072883537924]
We propose extracting unsupervised Multimodal Language representations that are universal and can be applied to different tasks.
We map the word-level aligned multimodal sequences to 2-D matrices and then use Convolutional Autoencoders to learn embeddings by combining multiple datasets.
It is also shown that our method is extremely lightweight and can be easily generalized to other tasks and unseen data with small performance drop and almost the same number of parameters.
arXiv Detail & Related papers (2021-10-06T18:28:07Z) - An Open-Source Dataset and A Multi-Task Model for Malay Named Entity
Recognition [3.511753382329252]
We build a Malay NER dataset (MYNER) comprising 28,991 sentences (over 384 thousand tokens)
An auxiliary task, boundary detection, is introduced to improve NER training in both explicit and implicit ways.
arXiv Detail & Related papers (2021-09-03T03:29:25Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
We study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting.
Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching.
arXiv Detail & Related papers (2021-03-24T16:20:02Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z) - M3P: Learning Universal Representations via Multitask Multilingual
Multimodal Pre-training [119.16007395162431]
M3P is a Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training.
We show that M3P can achieve comparable results for English and new state-of-the-art results for non-English languages.
arXiv Detail & Related papers (2020-06-04T03:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.