DPGAN: A Dual-Path Generative Adversarial Network for Missing Data Imputation in Graphs
- URL: http://arxiv.org/abs/2404.17164v1
- Date: Fri, 26 Apr 2024 05:26:10 GMT
- Title: DPGAN: A Dual-Path Generative Adversarial Network for Missing Data Imputation in Graphs
- Authors: Xindi Zheng, Yuwei Wu, Yu Pan, Wanyu Lin, Lei Ma, Jianjun Zhao,
- Abstract summary: This paper proposes a novel framework, called Dual-Pathrative Adversarial Network (DPGAN)
DPGAN can deal simultaneously with missing data and avoid over-smoothing problems.
Comprehensive experiments across various benchmark datasets substantiate that DPGAN consistently rivals, if not outperforms, existing state-of-the-art imputation algorithms.
- Score: 17.847551850315895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missing data imputation poses a paramount challenge when dealing with graph data. Prior works typically are based on feature propagation or graph autoencoders to address this issue. However, these methods usually encounter the over-smoothing issue when dealing with missing data, as the graph neural network (GNN) modules are not explicitly designed for handling missing data. This paper proposes a novel framework, called Dual-Path Generative Adversarial Network (DPGAN), that can deal simultaneously with missing data and avoid over-smoothing problems. The crux of our work is that it admits both global and local representations of the input graph signal, which can capture the long-range dependencies. It is realized via our proposed generator, consisting of two key components, i.e., MLPUNet++ and GraphUNet++. Our generator is trained with a designated discriminator via an adversarial process. In particular, to avoid assessing the entire graph as did in the literature, our discriminator focuses on the local subgraph fidelity, thereby boosting the quality of the local imputation. The subgraph size is adjustable, allowing for control over the intensity of adversarial regularization. Comprehensive experiments across various benchmark datasets substantiate that DPGAN consistently rivals, if not outperforms, existing state-of-the-art imputation algorithms. The code is provided at \url{https://github.com/momoxia/DPGAN}.
Related papers
- Exploiting the Structure of Two Graphs with Graph Neural Networks [8.354731976915588]
We propose a novel graph-based deep learning architecture to handle tasks where two sets of signals exist, each defined on a different graph.
By leveraging information from multiple graphs, the proposed architecture can capture more intricate relationships between different entities in the data.
arXiv Detail & Related papers (2024-11-07T19:39:39Z) - FedGT: Federated Node Classification with Scalable Graph Transformer [27.50698154862779]
We propose a scalable textbfFederated textbfGraph textbfTransformer (textbfFedGT) in the paper.
FedGT computes clients' similarity based on the aligned global nodes with optimal transport.
arXiv Detail & Related papers (2024-01-26T21:02:36Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Shift-Robust Node Classification via Graph Adversarial Clustering [43.62586751992269]
Graph Neural Networks (GNNs) are de facto node classification models in graph structured data.
During testing-time, these algorithms assume no data shift.
We propose Shift-Robust Node Classification (SRNC) to address these limitations.
arXiv Detail & Related papers (2022-03-07T18:13:21Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Source Free Unsupervised Graph Domain Adaptation [60.901775859601685]
Unsupervised Graph Domain Adaptation (UGDA) shows its practical value of reducing the labeling cost for node classification.
Most existing UGDA methods heavily rely on the labeled graph in the source domain.
In some real-world scenarios, the source graph is inaccessible because of privacy issues.
We propose a novel scenario named Source Free Unsupervised Graph Domain Adaptation (SFUGDA)
arXiv Detail & Related papers (2021-12-02T03:18:18Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.