SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes
- URL: http://arxiv.org/abs/2404.17255v2
- Date: Mon, 29 Apr 2024 06:55:56 GMT
- Title: SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes
- Authors: Georgia Baltsou, Ioannis Sarridis, Christos Koutlis, Symeon Papadopoulos,
- Abstract summary: We propose a methodology for generating synthetic face image datasets that capture a broader spectrum of facial diversity.
Specifically, our approach integrates demographics and biometrics but also non-permanent traits like make-up, hairstyle, and accessories.
These prompts guide a state-of-the-art text-to-image model in generating a comprehensive dataset of high-quality realistic images.
- Score: 14.966767182001755
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: AI systems rely on extensive training on large datasets to address various tasks. However, image-based systems, particularly those used for demographic attribute prediction, face significant challenges. Many current face image datasets primarily focus on demographic factors such as age, gender, and skin tone, overlooking other crucial facial attributes like hairstyle and accessories. This narrow focus limits the diversity of the data and consequently the robustness of AI systems trained on them. This work aims to address this limitation by proposing a methodology for generating synthetic face image datasets that capture a broader spectrum of facial diversity. Specifically, our approach integrates a systematic prompt formulation strategy, encompassing not only demographics and biometrics but also non-permanent traits like make-up, hairstyle, and accessories. These prompts guide a state-of-the-art text-to-image model in generating a comprehensive dataset of high-quality realistic images and can be used as an evaluation set in face analysis systems. Compared to existing datasets, our proposed dataset proves equally or more challenging in image classification tasks while being much smaller in size.
Related papers
- Balancing the Scales: Enhancing Fairness in Facial Expression Recognition with Latent Alignment [5.784550537553534]
This workleverages representation learning based on latent spaces to mitigate bias in facial expression recognition systems.
It also enhances a deep learning model's fairness and overall accuracy.
arXiv Detail & Related papers (2024-10-25T10:03:10Z) - Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration [11.451395489475647]
We explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets.
We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian.
We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another.
arXiv Detail & Related papers (2024-05-02T13:31:09Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFace is the first diffusion-based face forgery dataset.
It covers various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms.
It provides essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation.
arXiv Detail & Related papers (2024-03-27T11:32:44Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Stellar: Systematic Evaluation of Human-Centric Personalized
Text-to-Image Methods [52.806258774051216]
We focus on text-to-image systems that input a single image of an individual and ground the generation process along with text describing the desired visual context.
We introduce a standardized dataset (Stellar) that contains personalized prompts coupled with images of individuals that is an order of magnitude larger than existing relevant datasets and where rich semantic ground-truth annotations are readily available.
We derive a simple yet efficient, personalized text-to-image baseline that does not require test-time fine-tuning for each subject and which sets quantitatively and in human trials a new SoTA.
arXiv Detail & Related papers (2023-12-11T04:47:39Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
We introduce Disguise, a novel algorithm that seamlessly de-identifies facial images while ensuring the usability of the modified data.
Our method involves extracting and substituting depicted identities with synthetic ones, generated using variational mechanisms to maximize obfuscation and non-invertibility.
We extensively evaluate our method using multiple datasets, demonstrating a higher de-identification rate and superior consistency compared to prior approaches in various downstream tasks.
arXiv Detail & Related papers (2023-03-23T13:50:46Z) - StyleID: Identity Disentanglement for Anonymizing Faces [4.048444203617942]
The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID.
As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement.
StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.
arXiv Detail & Related papers (2022-12-28T12:04:24Z) - Multimodal Face Synthesis from Visual Attributes [85.87796260802223]
We propose a novel generative adversarial network that simultaneously synthesizes identity preserving multimodal face images.
multimodal stretch-in modules are introduced in the discriminator which discriminates between real and fake images.
arXiv Detail & Related papers (2021-04-09T13:47:23Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
In particular, face datasets are typically biased in terms of attributes such as gender, age, and race.
We propose a novel, generative style-based architecture for data augmentation that captures fine-grained aging patterns.
We show that the proposed method outperforms state-of-the-art algorithms for age transfer.
arXiv Detail & Related papers (2020-06-06T21:53:44Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.