Adversarial Reweighting with $α$-Power Maximization for Domain Adaptation
- URL: http://arxiv.org/abs/2404.17275v1
- Date: Fri, 26 Apr 2024 09:29:55 GMT
- Title: Adversarial Reweighting with $α$-Power Maximization for Domain Adaptation
- Authors: Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu,
- Abstract summary: We propose a novel approach, dubbed Adversarial Reweighting with $alpha$-Power Maximization (ARPM)
In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples.
We show that our method is superior to recent PDA methods.
- Score: 56.859005008344276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation, have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed Adversarial Reweighting with $\alpha$-Power Maximization (ARPM), for PDA where the source domain contains private classes absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the target domain for PDA, we present an $\alpha$-power maximization mechanism in ARPM, which enriches the family of losses for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, i.e., Office-31, Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods. Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.
Related papers
- Unsupervised Domain Adaptation Using Compact Internal Representations [23.871860648919593]
A technique for tackling unsupervised domain adaptation involves mapping data points from both the source and target domains into a shared embedding space.
We develop an additional technique which makes the internal distribution of the source domain more compact.
We demonstrate that by increasing the margins between data representations for different classes in the embedding space, we can improve the model performance for UDA.
arXiv Detail & Related papers (2024-01-14T05:53:33Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Distributionally Robust Domain Adaptation [12.02023514105999]
Domain Adaptation (DA) has recently received significant attention due to its potential to adapt a learning model across source and target domains with mismatched distributions.
In this paper, we propose DRDA, a distributionally robust domain adaptation method.
arXiv Detail & Related papers (2022-10-30T17:29:22Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
Enhancing model prediction confidence on unlabeled target data is an important objective in Unsupervised Domain Adaptation (UDA)
We show that this strategy is more efficient and better correlated with the objective of boosting prediction confidence than adversarial training on input images or intermediate features.
arXiv Detail & Related papers (2022-08-26T19:50:46Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
Unsupervised domain adaptation (UDA) improves classification performance on an unlabeled target domain by leveraging data from a fully labeled source domain.
We propose a model-agnostic two-stage learning framework, which greatly reduces flawed model predictions using soft pseudo-label strategy.
At the second stage, we propose a curriculum learning strategy to adaptively control the weighting between losses from the two domains.
arXiv Detail & Related papers (2021-12-03T14:47:32Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z) - Metric-Learning-Assisted Domain Adaptation [18.62119154143642]
Many existing domain alignment methods assume that a low source risk, together with the alignment of distributions of source and target, means a low target risk.
We propose a novel metric-learning-assisted domain adaptation (MLA-DA) method, which employs a novel triplet loss for helping better feature alignment.
arXiv Detail & Related papers (2020-04-23T04:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.