Efficient Deterministic Renewable Energy Forecasting Guided by Multiple-Location Weather Data
- URL: http://arxiv.org/abs/2404.17276v1
- Date: Fri, 26 Apr 2024 09:30:55 GMT
- Title: Efficient Deterministic Renewable Energy Forecasting Guided by Multiple-Location Weather Data
- Authors: Charalampos Symeonidis, Nikos Nikolaidis,
- Abstract summary: This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites.
The method employs a U-shaped Temporal Convolutional Auto-Encoder architecture for temporal processing of weather-related and energy-related time-series.
The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results.
- Score: 4.048814984274799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electricity generated from renewable energy sources has been established as an efficient remedy for both energy shortages and the environmental pollution stemming from conventional energy production methods. Solar and wind power are two of the most dominant renewable energy sources. The accurate forecasting of the energy generation of those sources facilitates their integration into electric grids, by minimizing the negative impact of uncertainty regarding their management and operation. This paper proposes a novel methodology for deterministic wind and solar energy generation forecasting for multiple generation sites, utilizing multi-location weather forecasts. The method employs a U-shaped Temporal Convolutional Auto-Encoder (UTCAE) architecture for temporal processing of weather-related and energy-related time-series across each site. The Multi-sized Kernels convolutional Spatio-Temporal Attention (MKST-Attention), inspired by the multi-head scaled-dot product attention mechanism, is also proposed aiming to efficiently transfer temporal patterns from weather data to energy data, without a priori knowledge of the locations of the power stations and the locations of provided weather data. The conducted experimental evaluation on a day-ahead solar and wind energy forecasting scenario on five datasets demonstrated that the proposed method achieves top results, outperforming all competitive time-series forecasting state-of-the-art methods.
Related papers
- Hiformer: Hybrid Frequency Feature Enhancement Inverted Transformer for Long-Term Wind Power Prediction [6.936415534357298]
We propose a novel approach called Hybrid Frequency Feature Enhancement Inverted Transformer (Hiformer)
Hiformer integrates signal decomposition technology with weather feature extraction technique to enhance the modeling of correlations between meteorological conditions and wind power generation.
Compared to the state-of-the-art methods, Hiformer: (i) can improve the prediction accuracy by up to 52.5%; and (ii) can reduce computational time by up to 68.5%.
arXiv Detail & Related papers (2024-10-17T08:00:36Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-Term Hourly Scenario Generation for Correlated Wind and Solar Power
combining Variational Autoencoders with Radial Basis Function Kernels [0.0]
We propose an innovative method for generating long-term hourly scenarios for wind and solar power generation.
By incorporating the Radial Basis Function (RBF) kernel in our artificial neural network architecture, we aim to obtain a latent space with improved regularization properties.
arXiv Detail & Related papers (2023-06-27T14:02:10Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - A novel automatic wind power prediction framework based on multi-time
scale and temporal attention mechanisms [6.120692237856329]
Wind power generation is characterized by volatility, intermittence, and randomness.
Traditional wind power forecasting systems primarily focus on ultra-short-term or short-term forecasts.
We propose an automatic framework capable of forecasting wind power across multi-time scale.
arXiv Detail & Related papers (2023-02-02T17:03:08Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution.
We provide a critical assessment of the currently used validation methods in the energy scenario generation literature.
We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods.
arXiv Detail & Related papers (2021-10-27T14:14:25Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
We develop a deep learning approach based on encoder-decoder structure.
Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data.
arXiv Detail & Related papers (2021-09-29T16:26:10Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.