Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives
- URL: http://arxiv.org/abs/2404.17344v1
- Date: Fri, 26 Apr 2024 11:50:16 GMT
- Title: Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives
- Authors: Theresa Wagner, Franziska Nestler, Martin Stoll,
- Abstract summary: We present a technique based on the non-equispaced fast Fourier transform (NFFT) with rigorous error analysis.
We show that this approach is also well suited to allow the approximation of the matrix that arises when the kernel is differentiated.
We illustrate the performance of the additive kernel scheme with fast matrix vector products on a number of data sets.
- Score: 0.5735035463793009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main computational bottlenecks when working with kernel based learning is dealing with the large and typically dense kernel matrix. Techniques dealing with fast approximations of the matrix vector product for these kernel matrices typically deteriorate in their performance if the feature vectors reside in higher-dimensional feature spaces. We here present a technique based on the non-equispaced fast Fourier transform (NFFT) with rigorous error analysis. We show that this approach is also well suited to allow the approximation of the matrix that arises when the kernel is differentiated with respect to the kernel hyperparameters; a problem often found in the training phase of methods such as Gaussian processes. We also provide an error analysis for this case. We illustrate the performance of the additive kernel scheme with fast matrix vector products on a number of data sets. Our code is available at https://github.com/wagnertheresa/NFFTAddKer
Related papers
- Snacks: a fast large-scale kernel SVM solver [0.8602553195689513]
Snacks is a new large-scale solver for Kernel Support Vector Machines.
Snacks relies on a Nystr"om approximation of the kernel matrix and an accelerated variant of the subgradient method.
arXiv Detail & Related papers (2023-04-17T04:19:20Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication [0.0]
kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task.
We propose the use of an ANOVA kernel, where we construct several kernels based on lower-dimensional feature spaces for which we provide fast algorithms realizing the matrix-vector products.
Based on a feature grouping approach, we then show how the fast matrix-vector products can be embedded into a learning method choosing kernel ridge regression and the preconditioned conjugate gradient solver.
arXiv Detail & Related papers (2021-11-19T10:29:39Z) - Fast Sketching of Polynomial Kernels of Polynomial Degree [61.83993156683605]
kernel is especially important as other kernels can often be approximated by the kernel via a Taylor series expansion.
Recent techniques in sketching reduce the dependence in the running time on the degree oblivious $q$ of the kernel.
We give a new sketch which greatly improves upon this running time, by removing the dependence on $q$ in the leading order term.
arXiv Detail & Related papers (2021-08-21T02:14:55Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
We provide recovery guarantees for a correlation-based optimization algorithm for robust 1-bit compressive sensing.
We make use of a practical iterative algorithm, and perform numerical experiments on image datasets to corroborate our results.
arXiv Detail & Related papers (2021-08-08T05:28:06Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - Faster Kernel Matrix Algebra via Density Estimation [46.253698241653254]
We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix $K in mathbbRn times n$ corresponding to $n$ points.
arXiv Detail & Related papers (2021-02-16T18:25:47Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Spectral Learning on Matrices and Tensors [74.88243719463053]
We show that tensor decomposition can pick up latent effects that are missed by matrix methods.
We also outline computational techniques to design efficient tensor decomposition methods.
arXiv Detail & Related papers (2020-04-16T22:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.