Exploring the Distinctiveness and Fidelity of the Descriptions Generated by Large Vision-Language Models
- URL: http://arxiv.org/abs/2404.17534v1
- Date: Fri, 26 Apr 2024 16:59:26 GMT
- Title: Exploring the Distinctiveness and Fidelity of the Descriptions Generated by Large Vision-Language Models
- Authors: Yuhang Huang, Zihan Wu, Chongyang Gao, Jiawei Peng, Xu Yang,
- Abstract summary: We study how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features.
We propose the Textual Retrieval-Augmented Classification (TRAC) framework, which allows us to delve deeper into analyzing fine-grained visual description generation.
- Score: 16.524244395901356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) are gaining traction for their remarkable ability to process and integrate visual and textual data. Despite their popularity, the capacity of LVLMs to generate precise, fine-grained textual descriptions has not been fully explored. This study addresses this gap by focusing on \textit{distinctiveness} and \textit{fidelity}, assessing how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features. We proposed the Textual Retrieval-Augmented Classification (TRAC) framework, which, by leveraging its generative capabilities, allows us to delve deeper into analyzing fine-grained visual description generation. This research provides valuable insights into the generation quality of LVLMs, enhancing the understanding of multimodal language models. Notably, MiniGPT-4 stands out for its better ability to generate fine-grained descriptions, outperforming the other two models in this aspect. The code is provided at \url{https://anonymous.4open.science/r/Explore_FGVDs-E277}.
Related papers
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - VISTA: A Visual and Textual Attention Dataset for Interpreting Multimodal Models [2.0718016474717196]
integrated Vision and Language Models (VLMs) are frequently regarded as black boxes within the machine learning research community.
We present an image-text aligned human visual attention dataset that maps specific associations between image regions and corresponding text segments.
We then compare the internal heatmaps generated by VL models with this dataset, allowing us to analyze and better understand the model's decision-making process.
arXiv Detail & Related papers (2024-10-06T20:11:53Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - SC-Tune: Unleashing Self-Consistent Referential Comprehension in Large Vision Language Models [19.005364038603204]
We introduce a novel fine-tuning paradigm named Self-Consistency Tuning (SC-Tune)
SC-Tune features the synergistic learning of a cyclic describer-locator system.
We demonstrate that SC-Tune significantly elevates performance across a spectrum of object-level vision-language benchmarks.
arXiv Detail & Related papers (2024-03-20T03:00:21Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.