CoSD: Collaborative Stance Detection with Contrastive Heterogeneous Topic Graph Learning
- URL: http://arxiv.org/abs/2404.17609v2
- Date: Wed, 19 Jun 2024 13:34:24 GMT
- Title: CoSD: Collaborative Stance Detection with Contrastive Heterogeneous Topic Graph Learning
- Authors: Yinghan Cheng, Qi Zhang, Chongyang Shi, Liang Xiao, Shufeng Hao, Liang Hu,
- Abstract summary: We present a novel collaborative stance detection framework called (CoSD)
CoSD learns topic-aware semantics and collaborative signals among texts, topics, and stance labels.
Experiments on two benchmark datasets demonstrate the state-of-the-art detection performance of CoSD.
- Score: 18.75039816544345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stance detection seeks to identify the viewpoints of individuals either in favor or against a given target or a controversial topic. Current advanced neural models for stance detection typically employ fully parametric softmax classifiers. However, these methods suffer from several limitations, including lack of explainability, insensitivity to the latent data structure, and unimodality, which greatly restrict their performance and applications. To address these challenges, we present a novel collaborative stance detection framework called (CoSD) which leverages contrastive heterogeneous topic graph learning to learn topic-aware semantics and collaborative signals among texts, topics, and stance labels for enhancing stance detection. During training, we construct a heterogeneous graph to structurally organize texts and stances through implicit topics via employing latent Dirichlet allocation. We then perform contrastive graph learning to learn heterogeneous node representations, aggregating informative multi-hop collaborative signals via an elaborate Collaboration Propagation Aggregation (CPA) module. During inference, we introduce a hybrid similarity scoring module to enable the comprehensive incorporation of topic-aware semantics and collaborative signals for stance detection. Extensive experiments on two benchmark datasets demonstrate the state-of-the-art detection performance of CoSD, verifying the effectiveness and explainability of our collaborative framework.
Related papers
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.