ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing
- URL: http://arxiv.org/abs/2404.17825v1
- Date: Sat, 27 Apr 2024 08:13:13 GMT
- Title: ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing
- Authors: Zhongze Wang, Haitao Zhao, Jingchao Peng, Lujian Yao, Kaijie Zhao,
- Abstract summary: Unrelated image dehazing (UID) holds significant research importance due to the challenges in acquiring haze/clear image pairs with identical backgrounds.
This paper proposes a novel method for UID named Orthogonal Decoupling Contrastive Regularization (ODCR)
- Score: 2.5944091779488123
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unpaired image dehazing (UID) holds significant research importance due to the challenges in acquiring haze/clear image pairs with identical backgrounds. This paper proposes a novel method for UID named Orthogonal Decoupling Contrastive Regularization (ODCR). Our method is grounded in the assumption that an image consists of both haze-related features, which influence the degree of haze, and haze-unrelated features, such as texture and semantic information. ODCR aims to ensure that the haze-related features of the dehazing result closely resemble those of the clear image, while the haze-unrelated features align with the input hazy image. To accomplish the motivation, Orthogonal MLPs optimized geometrically on the Stiefel manifold are proposed, which can project image features into an orthogonal space, thereby reducing the relevance between different features. Furthermore, a task-driven Depth-wise Feature Classifier (DWFC) is proposed, which assigns weights to the orthogonal features based on the contribution of each channel's feature in predicting whether the feature source is hazy or clear in a self-supervised fashion. Finally, a Weighted PatchNCE (WPNCE) loss is introduced to achieve the pulling of haze-related features in the output image toward those of clear images, while bringing haze-unrelated features close to those of the hazy input. Extensive experiments demonstrate the superior performance of our ODCR method on UID.
Related papers
- Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
This study introduces a novel Cascaded Diffusion with Discrepancy Mitigation framework.
It includes the low-quality image generation in latent space and the high-quality image generation in pixel space.
It minimizes computational costs by moving some inference steps from pixel space to latent space.
arXiv Detail & Related papers (2024-03-14T12:58:28Z) - CFDNet: A Generalizable Foggy Stereo Matching Network with Contrastive
Feature Distillation [11.655465312241699]
We introduce a framework based on contrastive feature distillation (CFD)
This strategy combines feature distillation from merged clean-fog features with contrastive learning, ensuring balanced dependence on fog depth hints and clean matching features.
arXiv Detail & Related papers (2024-02-28T09:12:01Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Dense Affinity Matching for Few-Shot Segmentation [83.65203917246745]
Few-Shot (FSS) aims to segment the novel class images with a few samples.
We propose a dense affinity matching framework to exploit the support-query interaction.
We show that our framework performs very competitively under different settings with only 0.68M parameters.
arXiv Detail & Related papers (2023-07-17T12:27:15Z) - SelfPromer: Self-Prompt Dehazing Transformers with Depth-Consistency [51.92434113232977]
This work presents an effective depth-consistency self-prompt Transformer for image dehazing.
It is motivated by an observation that the estimated depths of an image with haze residuals and its clear counterpart vary.
By incorporating the prompt, prompt embedding, and prompt attention into an encoder-decoder network based on VQGAN, we can achieve better perception quality.
arXiv Detail & Related papers (2023-03-13T11:47:24Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Degradation-agnostic Correspondence from Resolution-asymmetric Stereo [96.03964515969652]
We study the problem of stereo matching from a pair of images with different resolutions, e.g., those acquired with a tele-wide camera system.
We propose to impose the consistency between two views in a feature space instead of the image space, named feature-metric consistency.
We find that, although a stereo matching network trained with the photometric loss is not optimal, its feature extractor can produce degradation-agnostic and matching-specific features.
arXiv Detail & Related papers (2022-04-04T12:24:34Z) - Level-aware Haze Image Synthesis by Self-Supervised Content-Style
Disentanglement [56.99803235546565]
Key procedure of haze image translation through adversarial training lies in the disentanglement between the feature only involved in haze synthesis, i.e.style feature, and the feature representing the invariant semantic content, i.e. content feature.
arXiv Detail & Related papers (2021-03-11T06:53:18Z) - A GAN-Based Input-Size Flexibility Model for Single Image Dehazing [16.83211957781034]
This paper concentrates on the challenging task of single image dehazing.
We design a novel model to directly generate the haze-free image.
Considering this reason and various image sizes, we propose a novel input-size flexibility conditional generative adversarial network (cGAN) for single image dehazing.
arXiv Detail & Related papers (2021-02-19T08:27:17Z) - Blur-Attention: A boosting mechanism for non-uniform blurred image
restoration [27.075713246257596]
We propose a blur-attention module to dynamically capture the spatially varying features of non-uniform blurred images.
By introducing the blur-attention network into a conditional generation adversarial framework, we propose an end-to-end blind motion deblurring method.
Experimental results show that the deblurring capability of our method achieved outstanding objective performance in terms of PSNR, SSIM, and subjective visual quality.
arXiv Detail & Related papers (2020-08-19T16:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.