EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version)
- URL: http://arxiv.org/abs/2404.17917v4
- Date: Thu, 26 Sep 2024 00:07:09 GMT
- Title: EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery (Extended Version)
- Authors: Mirza Tanzim Sami, Da Yan, Saugat Adhikari, Lyuheng Yuan, Jiao Han, Zhe Jiang, Jalal Khalil, Yang Zhou,
- Abstract summary: EvaNet is an elevation-guided segmentation model based on the encoder-decoder architecture.
It works as a perfect drop-in replacement for U-Net in existing solutions to flood extent mapping.
- Score: 11.820388725641312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and timely mapping of flood extent from high-resolution satellite imagery plays a crucial role in disaster management such as damage assessment and relief activities. However, current state-of-the-art solutions are based on U-Net, which can-not segment the flood pixels accurately due to the ambiguous pixels (e.g., tree canopies, clouds) that prevent a direct judgement from only the spectral features. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), this work explores the use of an elevation map to improve flood extent mapping. We propose, EvaNet, an elevation-guided segmentation model based on the encoder-decoder architecture with two novel techniques: (1) a loss function encoding the physical law of gravity that if a location is flooded (resp. dry), then its adjacent locations with a lower (resp. higher) elevation must also be flooded (resp. dry); (2) a new (de)convolution operation that integrates the elevation map by a location sensitive gating mechanism to regulate how much spectral features flow through adjacent layers. Extensive experiments show that EvaNet significantly outperforms the U-Net baselines, and works as a perfect drop-in replacement for U-Net in existing solutions to flood extent mapping.
Related papers
- Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
This work proposes two approaches for identifying flooded regions in UAV aerial images.
The first approach utilizes texture-based unsupervised segmentation to detect flooded areas.
The second uses an artificial neural network on the texture features to classify images as flooded and non-flooded.
arXiv Detail & Related papers (2022-10-04T13:11:44Z) - Towards Daily High-resolution Inundation Observations using Deep
Learning and EO [0.0]
Constantly remote sensing presents a cost-effective solution for synoptic flood monitoring.
Satellites do offer timely inundation information when they cover an ongoing flood event, but they are limited by their resolution in terms of their ability to monitor flood evolution at various scales.
Data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions could yield high-resolution flood inundation at a daily scale.
arXiv Detail & Related papers (2022-08-10T14:04:50Z) - Attentive Dual Stream Siamese U-net for Flood Detection on
Multi-temporal Sentinel-1 Data [0.0]
We propose a flood detection network using bi-temporal SAR acquisitions.
The proposed segmentation network has an encoder-decoder architecture with two Siamese encoders for pre and post-flood images.
The network outperformed the existing state-of-the-art (uni-temporal) flood detection method by 6% IOU.
arXiv Detail & Related papers (2022-04-20T10:56:39Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - H2O-Net: Self-Supervised Flood Segmentation via Adversarial Domain
Adaptation and Label Refinement [6.577064131678387]
This work presents H2O-Network, a self supervised deep learning method to segment floods from satellites and aerial imagery.
H2O-Network learns to synthesize signals highly correlative with water presence as a domain adaptation step for semantic segmentation in high resolution satellite imagery.
We demonstrate that H2O-Net outperforms the state-of-the-art semantic segmentation methods on satellite imagery by 10% and 12% pixel accuracy and mIoU respectively.
arXiv Detail & Related papers (2020-10-11T18:35:03Z) - Flood Extent Mapping based on High Resolution Aerial Imagery and DEM: A
Hidden Markov Tree Approach [10.72081512622396]
This paper evaluates the proposed geographical hidden Markov tree model through case studies on high-resolution aerial imagery.
Three scenes are selected in heavily vegetated floodplains near the cities of Grimesland and Kinston in North Carolina during Hurricane Matthew floods in 2016.
Results show that the proposed hidden Markov tree model outperforms several state of the art machine learning algorithms.
arXiv Detail & Related papers (2020-08-25T18:35:28Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.