FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder
- URL: http://arxiv.org/abs/2404.17936v1
- Date: Sat, 27 Apr 2024 15:16:34 GMT
- Title: FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder
- Authors: Zheng Cheng, Guodong Fan, Jingchun Zhou, Min Gan, C. L. Philip Chen,
- Abstract summary: Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
- Score: 49.79611204954311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to light absorption and scattering caused by water and suspended particles. Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images. However, the degradation factors of underwater images are closely intertwined in the spatial domain. Although certain methods focus on enhancing images in the frequency domain, they overlook the inherent relationship between the image degradation factors and the information present in the frequency domain. As a result, these methods frequently enhance certain attributes of the improved image while inadequately addressing or even exacerbating other attributes. Moreover, many existing methods heavily rely on prior knowledge to address color shift problems in underwater images, limiting their flexibility and robustness. In order to overcome these limitations, we propose the Embedding Frequency and Dual Color Encoder Network (FDCE-Net) in our paper. The FDCE-Net consists of two main structures: (1) Frequency Spatial Network (FS-Net) aims to achieve initial enhancement by utilizing our designed Frequency Spatial Residual Block (FSRB) to decouple image degradation factors in the frequency domain and enhance different attributes separately. (2) To tackle the color shift issue, we introduce the Dual-Color Encoder (DCE). The DCE establishes correlations between color and semantic representations through cross-attention and leverages multi-scale image features to guide the optimization of adaptive color query. The final enhanced images are generated by combining the outputs of FS-Net and DCE through a fusion network. These images exhibit rich details, clear textures, low noise and natural colors.
Related papers
- You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Wavelet-based Fourier Information Interaction with Frequency Diffusion
Adjustment for Underwater Image Restoration [6.185197290440237]
We introduce WF-Diff, designed to fully leverage the characteristics of frequency domain information and diffusion models.
WF-Diff consists of two detachable networks: Wavelet-based Fourier information interaction network (WFI2-net) and Frequency Residual Diffusion Adjustment Module (FRDAM)
Our algorithm can show SOTA performance on real-world underwater image datasets, and achieves competitive performance in visual quality.
arXiv Detail & Related papers (2023-11-28T14:58:32Z) - Transmission and Color-guided Network for Underwater Image Enhancement [8.894719412298397]
We propose an Adaptive Transmission and Dynamic Color guided network (named ATDCnet) for underwater image enhancement.
To exploit the knowledge of physics, we design an Adaptive Transmission-directed Module (ATM) to better guide the network.
To deal with the color deviation problem, we design a Dynamic Color-guided Module (DCM) to post-process the enhanced image color.
arXiv Detail & Related papers (2023-08-09T11:43:54Z) - RSFDM-Net: Real-time Spatial and Frequency Domains Modulation Network
for Underwater Image Enhancement [5.3240763486073055]
We propose a Real-time Spatial and Frequency Domains Modulation Network (RSFDM-Net) for the efficient enhancement of colors and details in underwater images.
Our proposed conditional network is designed with Adaptive Fourier Gating Mechanism (AFGM) and Multiscale Conal Attention Module (MCAM)
To more precisely correct the color cast and low saturation of the image, we introduce a Three-branch Feature Extraction (TFE) block in the primary net.
arXiv Detail & Related papers (2023-02-23T17:27:05Z) - A Wavelet-based Dual-stream Network for Underwater Image Enhancement [11.178274779143209]
We present a wavelet-based dual-stream network that addresses color cast and blurry details in underwater images.
We handle these artifacts separately by decomposing an input image into multiple frequency bands using discrete wavelet transform.
We validate the proposed method on both real-world and synthetic underwater datasets and show the effectiveness of our model in color correction and blur removal with low computational complexity.
arXiv Detail & Related papers (2022-02-17T16:57:25Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - WaveFill: A Wavelet-based Generation Network for Image Inpainting [57.012173791320855]
WaveFill is a wavelet-based inpainting network that decomposes images into multiple frequency bands.
WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally.
It applies L1 reconstruction loss to the low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts.
arXiv Detail & Related papers (2021-07-23T04:44:40Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.