Transfer Learning Enhanced Single-choice Decision for Multi-choice Question Answering
- URL: http://arxiv.org/abs/2404.17949v1
- Date: Sat, 27 Apr 2024 16:02:55 GMT
- Title: Transfer Learning Enhanced Single-choice Decision for Multi-choice Question Answering
- Authors: Chenhao Cui, Yufan Jiang, Shuangzhi Wu, Zhoujun Li,
- Abstract summary: Multi-choice Machine Reading (MMRC) aims to select the correct answer from a set of options based on a given passage and question.
In this paper, we reconstruct multi-choice to single-choice by training a binary classification to distinguish whether a certain answer is correct.
Our proposed method gets rid of the multi-choice framework and can leverage resources of other tasks.
- Score: 27.601353412882258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-choice Machine Reading Comprehension (MMRC) aims to select the correct answer from a set of options based on a given passage and question. The existing methods employ the pre-trained language model as the encoder, share and transfer knowledge through fine-tuning.These methods mainly focus on the design of exquisite mechanisms to effectively capture the relationships among the triplet of passage, question and answers. It is non-trivial but ignored to transfer knowledge from other MRC tasks such as SQuAD due to task specific of MMRC.In this paper, we reconstruct multi-choice to single-choice by training a binary classification to distinguish whether a certain answer is correct. Then select the option with the highest confidence score as the final answer. Our proposed method gets rid of the multi-choice framework and can leverage resources of other tasks. We construct our model based on the ALBERT-xxlarge model and evaluate it on the RACE and DREAM datasets. Experimental results show that our model performs better than multi-choice methods. In addition, by transferring knowledge from other kinds of MRC tasks, our model achieves state-of-the-art results in both single and ensemble settings.
Related papers
- Differentiating Choices via Commonality for Multiple-Choice Question Answering [54.04315943420376]
Multiple-choice question answering can provide valuable clues for choosing the right answer.
Existing models often rank each choice separately, overlooking the context provided by other choices.
We propose a novel model by differentiating choices through identifying and eliminating their commonality, called DCQA.
arXiv Detail & Related papers (2024-08-21T12:05:21Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
Multiple choice questions (MCQs) serve as a common yet important task format in the evaluation of large language models (LLMs)
This work shows that modern LLMs are vulnerable to option position changes due to their inherent "selection bias"
We propose a label-free, inference-time debiasing method, called PriDe, which separates the model's prior bias for option IDs from the overall prediction distribution.
arXiv Detail & Related papers (2023-09-07T17:44:56Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
We propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP)
Instead of adding pointer heads to PLMs, we transform the task into a non-autoregressive Masked Language Modeling (MLM) generation problem.
Our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.
arXiv Detail & Related papers (2022-05-06T08:31:02Z) - Exploiting Meta-Cognitive Features for a Machine-Learning-Based One-Shot
Group-Decision Aggregation [0.7340017786387767]
Methods that rely on meta-cognitive information, such as confidence-based methods, had shown an improvement in various tasks.
Our aim is to exploit meta-cognitive information and to learn from it, for the purpose of enhancing the ability of the group to produce a correct answer.
arXiv Detail & Related papers (2022-01-20T15:56:18Z) - Improving Machine Reading Comprehension with Single-choice Decision and
Transfer Learning [18.81256990043713]
Multi-choice Machine Reading (MMRC) aims to select the correct answer from a set of options based on a given passage and question.
It is non-trivial to transfer knowledge from other MRC tasks such as SQuAD, Dream.
We reconstruct multi-choice to single-choice by training a binary classification to distinguish whether a certain answer is correct.
arXiv Detail & Related papers (2020-11-06T11:33:29Z) - Generating Correct Answers for Progressive Matrices Intelligence Tests [88.78821060331582]
Raven's Progressive Matrices are multiple-choice intelligence tests, where one tries to complete the missing location in a $3times 3$ grid of abstract images.
Previous attempts to address this test have focused solely on selecting the right answer out of the multiple choices.
In this work, we focus, instead, on generating a correct answer given the grid, without seeing the choices, which is a harder task, by definition.
arXiv Detail & Related papers (2020-11-01T13:21:07Z) - DUMA: Reading Comprehension with Transposition Thinking [107.89721765056281]
Multi-choice Machine Reading (MRC) requires model to decide the correct answer from a set of answer options when given a passage and a question.
New DUal Multi-head Co-Attention (DUMA) model is inspired by human's transposition thinking process solving the multi-choice MRC problem.
arXiv Detail & Related papers (2020-01-26T07:35:02Z) - ManyModalQA: Modality Disambiguation and QA over Diverse Inputs [73.93607719921945]
We present a new multimodal question answering challenge, ManyModalQA, in which an agent must answer a question by considering three distinct modalities.
We collect our data by scraping Wikipedia and then utilize crowdsourcing to collect question-answer pairs.
arXiv Detail & Related papers (2020-01-22T14:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.