Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension
- URL: http://arxiv.org/abs/2404.17991v3
- Date: Tue, 15 Oct 2024 18:35:34 GMT
- Title: Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension
- Authors: Lin Ai, Zheng Hui, Zizhou Liu, Julia Hirschberg,
- Abstract summary: Integrated during the fine-tuning phase of pre-trained generative language models (PLMs), QASE significantly enhances their performance.
The efficacy of the QASE module has been rigorously tested across various datasets.
- Score: 6.602323571343169
- License:
- Abstract: Machine Reading Comprehension (MRC) poses a significant challenge in the field of Natural Language Processing (NLP). While mainstream MRC methods predominantly leverage extractive strategies using encoder-only models such as BERT, generative approaches face the issue of out-of-control generation -- a critical problem where answers generated are often incorrect, irrelevant, or unfaithful to the source text. To address these limitations in generative models for MRC, we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning phase of pre-trained generative language models (PLMs), QASE significantly enhances their performance, allowing them to surpass the extractive capabilities of advanced Large Language Models (LLMs) such as GPT-4 in few-shot settings. Notably, these gains in performance do not come with an increase in computational demands. The efficacy of the QASE module has been rigorously tested across various datasets, consistently achieving or even surpassing state-of-the-art (SOTA) results, thereby bridging the gap between generative and extractive models in extractive MRC tasks.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - QASE Enhanced PLMs: Improved Control in Text Generation for MRC [6.602323571343169]
We introduce the Question-Attended Span Extraction (QASE) module to address the challenges of out-of-control generation in generative models for machine reading comprehension.
integrated during the fine-tuning of pre-trained generative language models (PLMs), QASE enables these PLMs to match SOTA extractive methods.
arXiv Detail & Related papers (2024-02-26T05:34:16Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
We introduce parameter-efficient sparsity crafting (PESC)
PESC crafts dense models into sparse models using the mixture-of-experts (MoE) architecture.
Our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GP3.5.
arXiv Detail & Related papers (2024-01-05T09:58:09Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Extrapolating Multilingual Understanding Models as Multilingual
Generators [82.1355802012414]
This paper explores methods to empower multilingual understanding models the generation abilities to get a unified model.
We propose a textbfSemantic-textbfGuided textbfAlignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters.
arXiv Detail & Related papers (2023-05-22T15:33:21Z) - Mixture of Soft Prompts for Controllable Data Generation [21.84489422361048]
Mixture of Soft Prompts (MSP) is proposed as a tool for data augmentation rather than direct prediction.
Our method achieves state-of-the-art results on three benchmarks when compared against strong baselines.
arXiv Detail & Related papers (2023-03-02T21:13:56Z) - Maximizing Efficiency of Language Model Pre-training for Learning
Representation [6.518508607788086]
ELECTRA is a novel approach for improving the compute efficiency of pre-trained language models.
Our work proposes adaptive early exit strategy to maximize the efficiency of the pre-training process.
arXiv Detail & Related papers (2021-10-13T10:25:06Z) - Multi-span Style Extraction for Generative Reading Comprehension [90.6069071495214]
We propose a new framework which enables generative MRC to be smoothly solved as multi-span extraction.
Thorough experiments demonstrate that this novel approach can alleviate the dilemma between generative models and single-span models.
arXiv Detail & Related papers (2020-09-15T23:06:48Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.