Assessing Image Quality Using a Simple Generative Representation
- URL: http://arxiv.org/abs/2404.18178v1
- Date: Sun, 28 Apr 2024 13:18:47 GMT
- Title: Assessing Image Quality Using a Simple Generative Representation
- Authors: Simon Raviv, Gal Chechik,
- Abstract summary: VAE-QA is a simple and efficient method for predicting image quality in the presence of a full-reference.
We evaluate our approach on four standard benchmarks and find that it significantly improves generalization across datasets.
- Score: 34.173947968362675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceptual image quality assessment (IQA) is the task of predicting the visual quality of an image as perceived by a human observer. Current state-of-the-art techniques are based on deep representations trained in discriminative manner. Such representations may ignore visually important features, if they are not predictive of class labels. Recent generative models successfully learn low-dimensional representations using auto-encoding and have been argued to preserve better visual features. Here we leverage existing auto-encoders and propose VAE-QA, a simple and efficient method for predicting image quality in the presence of a full-reference. We evaluate our approach on four standard benchmarks and find that it significantly improves generalization across datasets, has fewer trainable parameters, a smaller memory footprint and faster run time.
Related papers
- Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
A major drawback of state-of-the-art NR-IQA techniques is their reliance on a large number of human annotations.
We enable the learning of low-level quality features to distortion types by introducing a novel quality-aware contrastive loss.
We design zero-shot quality predictions from both pathways in a completely blind setting.
arXiv Detail & Related papers (2023-12-08T05:24:21Z) - X-IQE: eXplainable Image Quality Evaluation for Text-to-Image Generation
with Visual Large Language Models [17.67105465600566]
This paper introduces a novel explainable image quality evaluation approach called X-IQE.
X-IQE uses visual large language models (LLMs) to evaluate text-to-image generation methods by generating textual explanations.
It offers several advantages, including the ability to distinguish between real and generated images, evaluate text-image alignment, and assess image aesthetics without requiring model training or fine-tuning.
arXiv Detail & Related papers (2023-05-18T09:56:44Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.