Kernel Corrector LSTM
- URL: http://arxiv.org/abs/2404.18273v1
- Date: Sun, 28 Apr 2024 18:44:10 GMT
- Title: Kernel Corrector LSTM
- Authors: Rodrigo Tuna, Yassine Baghoussi, Carlos Soares, João Mendes-Moreira,
- Abstract summary: We propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM), that replaces the meta-learner of cLSTM with a simpler method: Kernel Smoothing.
We empirically evaluate the forecasting accuracy and the training time of the new algorithm and compare it with cLSTM and LSTM.
- Score: 1.034961673489652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting methods are affected by data quality issues in two ways: 1. they are hard to predict, and 2. they may affect the model negatively when it is updated with new data. The latter issue is usually addressed by pre-processing the data to remove those issues. An alternative approach has recently been proposed, Corrector LSTM (cLSTM), which is a Read \& Write Machine Learning (RW-ML) algorithm that changes the data while learning to improve its predictions. Despite promising results being reported, cLSTM is computationally expensive, as it uses a meta-learner to monitor the hidden states of the LSTM. We propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM), that replaces the meta-learner of cLSTM with a simpler method: Kernel Smoothing. We empirically evaluate the forecasting accuracy and the training time of the new algorithm and compare it with cLSTM and LSTM. Results indicate that it is able to decrease the training time while maintaining a competitive forecasting accuracy.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Are LSTMs Good Few-Shot Learners? [4.316506818580031]
In 2001, Hochreiter et al. showed that an LSTM trained with backpropagation across different tasks is capable of meta-learning.
We revisit this approach and test it on modern few-shot learning benchmarks.
We find that LSTM, surprisingly, outperform the popular meta-learning technique MAML on a simple few-shot sine wave regression benchmark, but that LSTM, expectedly, fall short on more complex few-shot image classification benchmarks.
arXiv Detail & Related papers (2023-10-22T00:16:30Z) - DeLELSTM: Decomposition-based Linear Explainable LSTM to Capture
Instantaneous and Long-term Effects in Time Series [26.378073712630467]
We propose a Decomposition-based Linear Explainable LSTM (DeLELSTM) to improve the interpretability of LSTM.
We demonstrate the effectiveness and interpretability of DeLELSTM on three empirical datasets.
arXiv Detail & Related papers (2023-08-26T07:45:41Z) - SwinLSTM:Improving Spatiotemporal Prediction Accuracy using Swin
Transformer and LSTM [10.104358712577215]
We propose a new recurrent cell ConvwinLSTM, which integrates Swin blocks and the LSTM, an extension that replaces the convolutional structure in ConvwinLSTM with the self-attention.
Our competitive experimental results demonstrate that learning global spatial dependencies is more advantageous for models to capture Swinwin dependencies.
arXiv Detail & Related papers (2023-08-19T03:08:28Z) - Can recurrent neural networks learn process model structure? [0.2580765958706854]
We introduce an evaluation framework that combines variant-based resampling and custom metrics for fitness, precision and generalization.
We confirm that LSTMs can struggle to learn process model structure, even with simplistic process data.
We also found that decreasing the amount of information seen by the LSTM during training, causes a sharp drop in generalization and precision scores.
arXiv Detail & Related papers (2022-12-13T08:40:01Z) - Extreme-Long-short Term Memory for Time-series Prediction [0.0]
Long Short-Term Memory (LSTM) is a new type of Recurrent Neural Networks (RNN)
In this paper, we propose an advanced LSTM algorithm, the Extreme Long Short-Term Memory (E-LSTM)
The new E-LSTM requires only 2 epochs to obtain the results of the 7th epoch traditional LSTM.
arXiv Detail & Related papers (2022-10-15T09:45:48Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Improving Deep Learning for HAR with shallow LSTMs [70.94062293989832]
We propose to alter the DeepConvLSTM to employ a 1-layered instead of a 2-layered LSTM.
Our results stand in contrast to the belief that one needs at least a 2-layered LSTM when dealing with sequential data.
arXiv Detail & Related papers (2021-08-02T08:14:59Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - Depth-Adaptive Graph Recurrent Network for Text Classification [71.20237659479703]
Sentence-State LSTM (S-LSTM) is a powerful and high efficient graph recurrent network.
We propose a depth-adaptive mechanism for the S-LSTM, which allows the model to learn how many computational steps to conduct for different words as required.
arXiv Detail & Related papers (2020-02-29T03:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.