ViOCRVQA: Novel Benchmark Dataset and Vision Reader for Visual Question Answering by Understanding Vietnamese Text in Images
- URL: http://arxiv.org/abs/2404.18397v1
- Date: Mon, 29 Apr 2024 03:17:47 GMT
- Title: ViOCRVQA: Novel Benchmark Dataset and Vision Reader for Visual Question Answering by Understanding Vietnamese Text in Images
- Authors: Huy Quang Pham, Thang Kien-Bao Nguyen, Quan Van Nguyen, Dan Quang Tran, Nghia Hieu Nguyen, Kiet Van Nguyen, Ngan Luu-Thuy Nguyen,
- Abstract summary: We introduce a novel dataset, ViOCRVQA (Vietnamese Optical Character Recognition - Visual Question Answering dataset), consisting of 28,000+ images and 120,000+ question-answer pairs.
In this dataset, all the images contain text and questions about the information relevant to the text in the images.
We deploy ideas from state-of-the-art methods proposed for English to conduct experiments on our dataset, revealing the challenges and difficulties inherent in a Vietnamese dataset.
- Score: 1.2529442734851663
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical Character Recognition - Visual Question Answering (OCR-VQA) is the task of answering text information contained in images that have just been significantly developed in the English language in recent years. However, there are limited studies of this task in low-resource languages such as Vietnamese. To this end, we introduce a novel dataset, ViOCRVQA (Vietnamese Optical Character Recognition - Visual Question Answering dataset), consisting of 28,000+ images and 120,000+ question-answer pairs. In this dataset, all the images contain text and questions about the information relevant to the text in the images. We deploy ideas from state-of-the-art methods proposed for English to conduct experiments on our dataset, revealing the challenges and difficulties inherent in a Vietnamese dataset. Furthermore, we introduce a novel approach, called VisionReader, which achieved 0.4116 in EM and 0.6990 in the F1-score on the test set. Through the results, we found that the OCR system plays a very important role in VQA models on the ViOCRVQA dataset. In addition, the objects in the image also play a role in improving model performance. We open access to our dataset at link (https://github.com/qhnhynmm/ViOCRVQA.git) for further research in OCR-VQA task in Vietnamese.
Related papers
- Dataset and Benchmark for Urdu Natural Scenes Text Detection, Recognition and Visual Question Answering [50.52792174648067]
This initiative seeks to bridge the gap between textual and visual comprehension.
We propose a new multi-task Urdu scene text dataset comprising over 1000 natural scene images.
We provide fine-grained annotations for text instances, addressing the limitations of previous datasets.
arXiv Detail & Related papers (2024-05-21T06:48:26Z) - ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images [1.2529442734851663]
We introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images.
We uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers.
arXiv Detail & Related papers (2024-04-16T15:28:30Z) - Making the V in Text-VQA Matter [1.2962828085662563]
Text-based VQA aims at answering questions by reading the text present in the images.
Recent studies have shown that the question-answer pairs in the dataset are more focused on the text present in the image.
The models trained on this dataset predict biased answers due to the lack of understanding of visual context.
arXiv Detail & Related papers (2023-08-01T05:28:13Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot
Vision-Language Understanding [84.83494254263138]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.
Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image
Understanding [85.39419609430453]
This work enhances the current visual instruction tuning pipeline with text-rich images.
We first use publicly available OCR tools to collect results on 422K text-rich images from the LAION dataset.
We prompt text-only GPT-4 with recognized texts and image captions to generate 16K conversations, each containing question-answer pairs for text-rich images.
arXiv Detail & Related papers (2023-06-29T17:08:16Z) - OpenViVQA: Task, Dataset, and Multimodal Fusion Models for Visual
Question Answering in Vietnamese [2.7528170226206443]
We introduce the OpenViVQA dataset, the first large-scale dataset for visual question answering in Vietnamese.
The dataset consists of 11,000+ images associated with 37,000+ question-answer pairs (QAs)
Our proposed methods achieve results that are competitive with SOTA models such as SAAA, MCAN, LORA, and M4C.
arXiv Detail & Related papers (2023-05-07T03:59:31Z) - TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation
with Question Answering [86.38098280689027]
We introduce an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA)
We present a comprehensive evaluation of existing text-to-image models using a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.)
arXiv Detail & Related papers (2023-03-21T14:41:02Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z) - A Vietnamese Dataset for Evaluating Machine Reading Comprehension [2.7528170226206443]
We present UIT-ViQuAD, a new dataset for the low-resource language as Vietnamese to evaluate machine reading comprehension models.
This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia.
We conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD.
arXiv Detail & Related papers (2020-09-30T15:06:56Z) - TextCaps: a Dataset for Image Captioning with Reading Comprehension [56.89608505010651]
Text is omnipresent in human environments and frequently critical to understand our surroundings.
To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images.
Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase.
arXiv Detail & Related papers (2020-03-24T02:38:35Z) - UIT-ViIC: A Dataset for the First Evaluation on Vietnamese Image
Captioning [2.7528170226206443]
This paper contributes to research on Image Captioning task in terms of extending dataset to a different language - Vietnamese.
In this scope, we first build a dataset which contains manually written captions for images from Microsoft COCO dataset relating to sports played with balls.
Following that, we evaluate our dataset on deep neural network models and do comparisons with English dataset and two Vietnamese datasets.
arXiv Detail & Related papers (2020-02-01T09:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.