Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models
- URL: http://arxiv.org/abs/2404.18508v3
- Date: Wed, 09 Oct 2024 06:57:39 GMT
- Title: Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models
- Authors: Mark Schöne, Neeraj Mohan Sushma, Jingyue Zhuge, Christian Mayr, Anand Subramoney, David Kappel,
- Abstract summary: Event-based sensors are well suited for real-time processing.
Current methods either collapse events into frames or cannot scale up when processing the event data directly event-by-event.
- Score: 2.551844666707809
- License:
- Abstract: Event-based sensors are well suited for real-time processing due to their fast response times and encoding of the sensory data as successive temporal differences. These and other valuable properties, such as a high dynamic range, are suppressed when the data is converted to a frame-based format. However, most current methods either collapse events into frames or cannot scale up when processing the event data directly event-by-event. In this work, we address the key challenges of scaling up event-by-event modeling of the long event streams emitted by such sensors, which is a particularly relevant problem for neuromorphic computing. While prior methods can process up to a few thousand time steps, our model, based on modern recurrent deep state-space models, scales to event streams of millions of events for both training and inference. We leverage their stable parameterization for learning long-range dependencies, parallelizability along the sequence dimension, and their ability to integrate asynchronous events effectively to scale them up to long event streams. We further augment these with novel event-centric techniques enabling our model to match or beat the state-of-the-art performance on several event stream benchmarks. In the Spiking Speech Commands task, we improve state-of-the-art by a large margin of 7.7% to 88.4%. On the DVS128-Gestures dataset, we achieve competitive results without using frames or convolutional neural networks. Our work demonstrates, for the first time, that it is possible to use fully event-based processing with purely recurrent networks to achieve state-of-the-art task performance in several event-based benchmarks.
Related papers
- EventFlow: Forecasting Continuous-Time Event Data with Flow Matching [12.976042923229466]
We propose EventFlow, a non-autoregressive generative model for temporal point processes.
Our model builds on the flow matching framework in order to directly learn joint distributions over event times, side-stepping the autoregressive process.
arXiv Detail & Related papers (2024-10-09T20:57:00Z) - Fast Window-Based Event Denoising with Spatiotemporal Correlation
Enhancement [85.66867277156089]
We propose window-based event denoising, which simultaneously deals with a stack of events.
In spatial domain, we choose maximum a posteriori (MAP) to discriminate real-world event and noise.
Our algorithm can remove event noise effectively and efficiently and improve the performance of downstream tasks.
arXiv Detail & Related papers (2024-02-14T15:56:42Z) - XTSFormer: Cross-Temporal-Scale Transformer for Irregular Time Event
Prediction [9.240950990926796]
Event prediction aims to forecast the time and type of a future event based on a historical event sequence.
Despite its significance, several challenges exist, including the irregularity of time intervals between consecutive events, the existence of cycles, periodicity, and multi-scale event interactions.
arXiv Detail & Related papers (2024-02-03T20:33:39Z) - Representation Learning on Event Stream via an Elastic Net-incorporated
Tensor Network [1.9515859963221267]
We present a novel representation method which can capture global correlations of all events in the event stream simultaneously.
Our method can achieve effective results in applications like filtering noise compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-01-16T02:51:47Z) - EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields [80.94515892378053]
EvDNeRF is a pipeline for generating event data and training an event-based dynamic NeRF.
NeRFs offer geometric-based learnable rendering, but prior work with events has only considered reconstruction of static scenes.
We show that by training on varied batch sizes of events, we can improve test-time predictions of events at fine time resolutions.
arXiv Detail & Related papers (2023-10-03T21:08:41Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
Event sequences are non-uniform and sparse, making traditional models unsuitable.
We propose COTIC, a method based on an efficient convolution neural network designed to handle the non-uniform occurrence of events over time.
COTIC outperforms existing models in predicting the next event time and type, achieving an average rank of 1.5 compared to 3.714 for the nearest competitor.
arXiv Detail & Related papers (2023-02-13T10:34:51Z) - EventMix: An Efficient Augmentation Strategy for Event-Based Data [4.8416725611508244]
Event cameras can provide high dynamic range and low-energy event stream data.
The scale is smaller and more difficult to obtain than traditional frame-based data.
This paper proposes an efficient data augmentation strategy for event stream data: EventMix.
arXiv Detail & Related papers (2022-05-24T13:07:33Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
Event-based Graph Neural Networks generalize standard GNNs to process events as "evolving"-temporal graphs.
AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time.
arXiv Detail & Related papers (2022-03-31T16:21:12Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
Event cameras open up new possibilities for robotic perception due to their low latency and high dynamic range.
We focus on event-based visual odometry (VO)
We propose an asynchronous structure-from-motion optimisation back-end.
arXiv Detail & Related papers (2022-03-02T11:28:47Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
Event cameras are bio-inspired sensors that respond to per-pixel brightness changes in the form of asynchronous and sparse "events"
We present a general framework for converting models trained on synchronous image-like event representations into asynchronous models with identical output.
We show both theoretically and experimentally that this drastically reduces the computational complexity and latency of high-capacity, synchronous neural networks.
arXiv Detail & Related papers (2020-03-20T08:39:49Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.