Terrain characterisation for online adaptability of automated sonar processing: Lessons learnt from operationally applying ATR to sidescan sonar in MCM applications
- URL: http://arxiv.org/abs/2404.18663v1
- Date: Mon, 29 Apr 2024 12:48:42 GMT
- Title: Terrain characterisation for online adaptability of automated sonar processing: Lessons learnt from operationally applying ATR to sidescan sonar in MCM applications
- Authors: Thomas Guerneve, Stephanos Loizou, Andrea Munafo, Pierre-Yves Mignotte,
- Abstract summary: This paper presents two online seafloor characterisation techniques to improve explainability during Autonomous Underwater Vehicles (AUVs) missions.
Both techniques rely on an unsupervised machine learning approach to extract terrain features which relate to the human understanding of terrain complexity.
The first technnique provides a quantitative, application-driven terrain characterisation metric based on the performance of an ATR algorithm.
The second method provides a way to incorporate subject matter expertise and enables contextualisation and explainability in support for scenario-dependent subjective terrain characterisation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of Automated Recognition (ATR) algorithms on side-scan sonar imagery has shown to degrade rapidly when deployed on non benign environments. Complex seafloors and acoustic artefacts constitute distractors in the form of strong textural patterns, creating false detections or preventing detections of true objects. This paper presents two online seafloor characterisation techniques to improve explainability during Autonomous Underwater Vehicles (AUVs) missions. Importantly and as opposed to previous work in the domain, these techniques are not based on a model and require limited input from human operators, making it suitable for real-time onboard processing. Both techniques rely on an unsupervised machine learning approach to extract terrain features which relate to the human understanding of terrain complexity. The first technnique provides a quantitative, application-driven terrain characterisation metric based on the performance of an ATR algorithm. The second method provides a way to incorporate subject matter expertise and enables contextualisation and explainability in support for scenario-dependent subjective terrain characterisation. The terrain complexity matches the expectation of seasoned users making this tool desirable and trustworthy in comparison to traditional unsupervised approaches. We finally detail an application of these techniques to repair a Mine Countermeasures (MCM) mission carried with SeeByte autonomy framework Neptune.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Deep Learning Approaches in Pavement Distress Identification: A Review [0.39373541926236766]
This paper reviews recent advancements in image processing and deep learning techniques for pavement distress detection and classification.
The ability of these algorithms to discern patterns and make predictions based on extensive datasets has revolutionized the domain of pavement distress identification.
By capturing high-resolution images, UAVs provide valuable data that can be processed using deep learning algorithms to detect and classify various pavement distresses effectively.
arXiv Detail & Related papers (2023-08-01T20:30:11Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling vision-based systems in orbit.
Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem.
Despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way.
arXiv Detail & Related papers (2023-05-12T09:52:53Z) - UDTIRI: An Online Open-Source Intelligent Road Inspection Benchmark
Suite [21.565438268381467]
We introduce the road pothole detection task, the first online competition published within this benchmark suite.
Our benchmark provides a systematic and thorough evaluation of state-of-the-art object detection, semantic segmentation, and instance segmentation networks.
By providing algorithms with a more comprehensive understanding of diverse road conditions, we seek to unlock their untapped potential.
arXiv Detail & Related papers (2023-04-18T09:13:52Z) - Read Pointer Meters in complex environments based on a Human-like
Alignment and Recognition Algorithm [16.823681016882315]
We propose a human-like alignment and recognition algorithm to overcome these problems.
A Spatial Transformed Module(STM) is proposed to obtain the front view of images in a self-autonomous way.
A Value Acquisition Module(VAM) is proposed to infer accurate meter values by an end-to-end trained framework.
arXiv Detail & Related papers (2023-02-28T05:37:04Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments.
Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and three-wheelers, and pedestrians.
arXiv Detail & Related papers (2020-09-22T08:25:44Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.