Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning
- URL: http://arxiv.org/abs/2404.18670v1
- Date: Mon, 29 Apr 2024 13:05:59 GMT
- Title: Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning
- Authors: Annie Hu, Samuel Stockman, Xun Wu, Richard Wood, Bangdong Zhi, Oliver Y. Chén,
- Abstract summary: Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand.
It is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
- Score: 3.9054437595657534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and timely prediction of patient care demand not only affects effective resource allocation but also influences clinical decision-making as well as patient experience. Accurately predicting patient care demand, however, is a ubiquitous challenge for hospitals across the world due, in part, to the demand's time-varying temporal variability, and, in part, to the difficulty in modelling trends in advance. To address this issue, here, we develop two methods, a relatively simple time-vary linear model, and a more advanced neural network model. The former forecasts patient arrivals hourly over a week based on factors such as day of the week and previous 7-day arrival patterns. The latter leverages a long short-term memory (LSTM) model, capturing non-linear relationships between past data and a three-day forecasting window. We evaluate the predictive capabilities of the two proposed approaches compared to two na\"ive approaches - a reduced-rank vector autoregressive (VAR) model and the TBATS model. Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand. Additionally, the linear model is more explainable thanks to its simple architecture, whereas, by accurately modelling weekly seasonal trends, the LSTM model delivers lower prediction errors. Taken together, our explorations suggest the utility of machine learning in predicting time-varying patient care demand; additionally, it is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Forecasting Patient Demand at Urgent Care Clinics using Machine Learning [0.0]
This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand.
A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance.
The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.
arXiv Detail & Related papers (2022-05-25T22:27:49Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Adaptive Prediction Timing for Electronic Health Records [3.308743964406688]
We introduce a novel, more realistic, approach to generating patient outcome predictions at an adaptive rate.
We use a Recurrent Neural Network (RNN) and a Bayesian embedding layer with a new aggregation method to demonstrate adaptive prediction timing.
At 48 hours after patient admission, our model achieves equal performance compared to its static-windowed counterparts.
arXiv Detail & Related papers (2020-03-05T12:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.