Dual-Modal Prompting for Sketch-Based Image Retrieval
- URL: http://arxiv.org/abs/2404.18695v1
- Date: Mon, 29 Apr 2024 13:43:49 GMT
- Title: Dual-Modal Prompting for Sketch-Based Image Retrieval
- Authors: Liying Gao, Bingliang Jiao, Peng Wang, Shizhou Zhang, Hanwang Zhang, Yanning Zhang,
- Abstract summary: We propose a dual-modal CLIP (DP-CLIP) network, in which an adaptive prompting strategy is designed.
We employ a set of images within the target category and the textual category label to respectively construct a set of category-adaptive prompt tokens and channel scales.
Our DP-CLIP outperforms the state-of-the-art fine-grained zero-shot method by 7.3% in Acc.@1 on the Sketchy dataset.
- Score: 76.12076969949062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sketch-based image retrieval (SBIR) associates hand-drawn sketches with their corresponding realistic images. In this study, we aim to tackle two major challenges of this task simultaneously: i) zero-shot, dealing with unseen categories, and ii) fine-grained, referring to intra-category instance-level retrieval. Our key innovation lies in the realization that solely addressing this cross-category and fine-grained recognition task from the generalization perspective may be inadequate since the knowledge accumulated from limited seen categories might not be fully valuable or transferable to unseen target categories. Inspired by this, in this work, we propose a dual-modal prompting CLIP (DP-CLIP) network, in which an adaptive prompting strategy is designed. Specifically, to facilitate the adaptation of our DP-CLIP toward unpredictable target categories, we employ a set of images within the target category and the textual category label to respectively construct a set of category-adaptive prompt tokens and channel scales. By integrating the generated guidance, DP-CLIP could gain valuable category-centric insights, efficiently adapting to novel categories and capturing unique discriminative clues for effective retrieval within each target category. With these designs, our DP-CLIP outperforms the state-of-the-art fine-grained zero-shot SBIR method by 7.3% in Acc.@1 on the Sketchy dataset. Meanwhile, in the other two category-level zero-shot SBIR benchmarks, our method also achieves promising performance.
Related papers
- Category-Prompt Refined Feature Learning for Long-Tailed Multi-Label Image Classification [8.139529179222844]
Category-Prompt Refined Feature Learning (CPRFL) is a novel approach for Long-Tailed Multi-Label image Classification.
CPRFL initializes category-prompts from the pretrained CLIP's embeddings and decouples category-specific visual representations.
We validate the effectiveness of our method on two LTMLC benchmarks and extensive experiments demonstrate the superiority of our work over baselines.
arXiv Detail & Related papers (2024-08-15T12:51:57Z) - Investigating the Limitation of CLIP Models: The Worst-Performing
Categories [53.360239882501325]
Contrastive Language-Image Pre-training (CLIP) provides a foundation model by integrating natural language into visual concepts.
It is usually expected that satisfactory overall accuracy can be achieved across numerous domains through well-designed textual prompts.
However, we found that their performance in the worst categories is significantly inferior to the overall performance.
arXiv Detail & Related papers (2023-10-05T05:37:33Z) - GridCLIP: One-Stage Object Detection by Grid-Level CLIP Representation
Learning [55.77244064907146]
One-stage detector GridCLIP learns grid-level representations to adapt to the intrinsic principle of one-stage detection learning.
Experiments show that the learned CLIP-based grid-level representations boost the performance of undersampled (infrequent and novel) categories.
arXiv Detail & Related papers (2023-03-16T12:06:02Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
We propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category.
Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model.
We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions.
arXiv Detail & Related papers (2022-04-08T00:55:15Z) - Integrative Few-Shot Learning for Classification and Segmentation [37.50821005917126]
We introduce the integrative task of few-shot classification and segmentation (FS-CS)
FS-CS aims to classify and segment target objects in a query image when the target classes are given with a few examples.
We propose the integrative few-shot learning framework for FS-CS, which trains a learner to construct class-wise foreground maps.
arXiv Detail & Related papers (2022-03-29T16:14:40Z) - Learning to Compose Diversified Prompts for Image Emotion Classification [5.586293129420233]
Contrastive Language-Image Pre-training (CLIP) represents the latest incarnation of pre-trained vision-language models.
CLIP has recently shown its superior power on a wide range of downstream vision-language tasks like Visual Question Answering.
We propose a general framework that shows how CLIP can be effectively applied to Image Emotion Classification.
arXiv Detail & Related papers (2022-01-26T14:31:55Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - Progressive Co-Attention Network for Fine-grained Visual Classification [20.838908090777885]
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category.
Most existing methods only take individual image as input.
We propose an effective method called progressive co-attention network (PCA-Net) to tackle this problem.
arXiv Detail & Related papers (2021-01-21T10:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.