IPixMatch: Boost Semi-supervised Semantic Segmentation with Inter-Pixel Relation
- URL: http://arxiv.org/abs/2404.18891v1
- Date: Mon, 29 Apr 2024 17:27:37 GMT
- Title: IPixMatch: Boost Semi-supervised Semantic Segmentation with Inter-Pixel Relation
- Authors: Kebin Wu, Wenbin Li, Xiaofei Xiao,
- Abstract summary: Semi-supervised semantic segmentation has been a typical solution to achieve a desirable tradeoff between annotation cost and segmentation performance.
Previous approaches tend to neglect the contextual knowledge embedded within inter-pixel relations.
We propose a novel approach IPixMatch designed to mine the neglected but valuable Inter-Pixel information for semi-supervised learning.
- Score: 3.448980103001069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of labeled data in real-world scenarios is a critical bottleneck of deep learning's effectiveness. Semi-supervised semantic segmentation has been a typical solution to achieve a desirable tradeoff between annotation cost and segmentation performance. However, previous approaches, whether based on consistency regularization or self-training, tend to neglect the contextual knowledge embedded within inter-pixel relations. This negligence leads to suboptimal performance and limited generalization. In this paper, we propose a novel approach IPixMatch designed to mine the neglected but valuable Inter-Pixel information for semi-supervised learning. Specifically, IPixMatch is constructed as an extension of the standard teacher-student network, incorporating additional loss terms to capture inter-pixel relations. It shines in low-data regimes by efficiently leveraging the limited labeled data and extracting maximum utility from the available unlabeled data. Furthermore, IPixMatch can be integrated seamlessly into most teacher-student frameworks without the need of model modification or adding additional components. Our straightforward IPixMatch method demonstrates consistent performance improvements across various benchmark datasets under different partitioning protocols.
Related papers
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
Unsupervised domain adaptive segmentation aims to improve the segmentation accuracy of models on target domains without relying on labeled data from those domains.
It seeks to align the feature representations of the source domain (where labeled data is available) and the target domain (where only unlabeled data is present)
arXiv Detail & Related papers (2024-07-24T08:53:29Z) - AttenScribble: Attentive Similarity Learning for Scribble-Supervised
Medical Image Segmentation [5.8447004333496855]
In this paper, we present a straightforward yet effective scribble supervised learning framework.
We create a pluggable spatial self-attention module which could be attached on top of any internal feature layers of arbitrary fully convolutional network (FCN) backbone.
This attentive similarity leads to a novel regularization loss that imposes consistency between segmentation prediction and visual affinity.
arXiv Detail & Related papers (2023-12-11T18:42:18Z) - Relevant Intrinsic Feature Enhancement Network for Few-Shot Semantic
Segmentation [34.257289290796315]
We propose the Relevant Intrinsic Feature Enhancement Network (RiFeNet) to improve semantic consistency of foreground instances.
RiFeNet surpasses the state-of-the-art methods on PASCAL-5i and COCO benchmarks.
arXiv Detail & Related papers (2023-12-11T16:02:57Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
Self-training is a prevailing approach in cross-domain semantic segmentation.
We propose a novel approach called Semantic Connectivity-driven pseudo-labeling.
This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics.
arXiv Detail & Related papers (2023-12-11T12:29:51Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - FIXED: Frustratingly Easy Domain Generalization with Mixup [53.782029033068675]
Domain generalization (DG) aims to learn a generalizable model from multiple training domains such that it can perform well on unseen target domains.
A popular strategy is to augment training data to benefit generalization through methods such as Mixupcitezhang 2018mixup.
We propose a simple yet effective enhancement for Mixup-based DG, namely domain-invariant Feature mIXup (FIX)
Our approach significantly outperforms nine state-of-the-art related methods, beating the best performing baseline by 6.5% on average in terms of test accuracy.
arXiv Detail & Related papers (2022-11-07T09:38:34Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
We propose a differentiable geometric warping to conduct unsupervised data augmentation.
We also propose a novel adversarial dual-student framework to improve the Mean-Teacher.
Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets.
arXiv Detail & Related papers (2022-03-05T17:36:17Z) - Dynamic Feature Regularized Loss for Weakly Supervised Semantic
Segmentation [37.43674181562307]
We propose a new regularized loss which utilizes both shallow and deep features that are dynamically updated.
Our approach achieves new state-of-the-art performances, outperforming other approaches by a significant margin with more than 6% mIoU increase.
arXiv Detail & Related papers (2021-08-03T05:11:00Z) - i-Mix: A Domain-Agnostic Strategy for Contrastive Representation
Learning [117.63815437385321]
We propose i-Mix, a simple yet effective domain-agnostic regularization strategy for improving contrastive representation learning.
In experiments, we demonstrate that i-Mix consistently improves the quality of learned representations across domains.
arXiv Detail & Related papers (2020-10-17T23:32:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.