What's in the Flow? Exploiting Temporal Motion Cues for Unsupervised Generic Event Boundary Detection
- URL: http://arxiv.org/abs/2404.18935v1
- Date: Thu, 15 Feb 2024 14:49:15 GMT
- Title: What's in the Flow? Exploiting Temporal Motion Cues for Unsupervised Generic Event Boundary Detection
- Authors: Sourabh Vasant Gothe, Vibhav Agarwal, Sourav Ghosh, Jayesh Rajkumar Vachhani, Pranay Kashyap, Barath Raj Kandur Raja,
- Abstract summary: Generic Event Boundary Detection (GEBD) task aims to recognize generic, taxonomy-free boundaries that segment a video into meaningful events.
Current methods typically involve a neural model trained on a large volume of data, demanding substantial computational power and storage space.
We propose FlowGEBD, a non-parametric, unsupervised technique for GEBD.
- Score: 1.3695134621603882
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generic Event Boundary Detection (GEBD) task aims to recognize generic, taxonomy-free boundaries that segment a video into meaningful events. Current methods typically involve a neural model trained on a large volume of data, demanding substantial computational power and storage space. We explore two pivotal questions pertaining to GEBD: Can non-parametric algorithms outperform unsupervised neural methods? Does motion information alone suffice for high performance? This inquiry drives us to algorithmically harness motion cues for identifying generic event boundaries in videos. In this work, we propose FlowGEBD, a non-parametric, unsupervised technique for GEBD. Our approach entails two algorithms utilizing optical flow: (i) Pixel Tracking and (ii) Flow Normalization. By conducting thorough experimentation on the challenging Kinetics-GEBD and TAPOS datasets, our results establish FlowGEBD as the new state-of-the-art (SOTA) among unsupervised methods. FlowGEBD exceeds the neural models on the Kinetics-GEBD dataset by obtaining an F1@0.05 score of 0.713 with an absolute gain of 31.7% compared to the unsupervised baseline and achieves an average F1 score of 0.623 on the TAPOS validation dataset.
Related papers
- Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss [9.287932323337163]
3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow.
Deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation.
We introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts.
arXiv Detail & Related papers (2024-10-15T18:00:00Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds [3.3888257250564364]
This paper presents a framework for semantic segmentation on sparse sequential point clouds of millimeter-wave radar.
The sparsity and capturing temporal-topological features of mmWave data is still a problem.
We introduce graph structure and topological features to the point cloud and propose a semantic segmentation framework.
Our model achieves mean accuracy on a custom dataset by $mathbf82.31%$ and outperforms state-of-the-art algorithms.
arXiv Detail & Related papers (2023-04-27T12:28:06Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - GFlowCausal: Generative Flow Networks for Causal Discovery [27.51595081346858]
We propose a novel approach to learning a Directed Acyclic Graph (DAG) from observational data called GFlowCausal.
GFlowCausal aims to learn the best policy to generate high-reward DAGs by sequential actions with probabilities proportional to predefined rewards.
We conduct extensive experiments on both synthetic and real datasets, and results show the proposed approach to be superior and also performs well in a large-scale setting.
arXiv Detail & Related papers (2022-10-15T04:07:39Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - Masked Autoencoders for Generic Event Boundary Detection CVPR'2022
Kinetics-GEBD Challenge [11.823891739821443]
Generic Event Boundary Detection (GEBD) tasks aim at detecting generic, taxonomy-free event boundaries that segment a whole video into chunks.
In this paper, we apply Masked Autoencoders to improve algorithm performance on the GEBD tasks.
With our approach, we achieved 85.94% on the F1-score on the Kinetics-GEBD test set, which improved the F1-score by 2.31% compared to the winner of the 2021 Kinetics-GEBD Challenge.
arXiv Detail & Related papers (2022-06-17T08:10:27Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
Anomaly detection becomes increasingly important for the dependability and serviceability of IT services.
Existing unsupervised methods need anomaly examples to obtain a suitable decision boundary.
We develop A2Log, which is an unsupervised anomaly detection method consisting of two steps: Anomaly scoring and anomaly decision.
arXiv Detail & Related papers (2021-09-20T13:40:21Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.