HydraLoRA: An Asymmetric LoRA Architecture for Efficient Fine-Tuning
- URL: http://arxiv.org/abs/2404.19245v2
- Date: Thu, 23 May 2024 15:06:02 GMT
- Title: HydraLoRA: An Asymmetric LoRA Architecture for Efficient Fine-Tuning
- Authors: Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, Chengzhong Xu,
- Abstract summary: Adapting Large Language Models to new tasks through fine-tuning has been made more efficient by the introduction of.
Efficient Fine-Tuning (PEFT) techniques, such as LoRA, often underperform compared to full fine-tuning.
We have developed HydraLoRA, a LoRA framework with an asymmetric structure that eliminates the need for domain expertise.
- Score: 27.440300738911706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting Large Language Models (LLMs) to new tasks through fine-tuning has been made more efficient by the introduction of Parameter-Efficient Fine-Tuning (PEFT) techniques, such as LoRA. However, these methods often underperform compared to full fine-tuning, particularly in scenarios involving complex datasets. This issue becomes even more pronounced in complex domains, highlighting the need for improved PEFT approaches that can achieve better performance. Through a series of experiments, we have uncovered two critical insights that shed light on the training and parameter inefficiency of LoRA. Building on these insights, we have developed HydraLoRA, a LoRA framework with an asymmetric structure that eliminates the need for domain expertise. Our experiments demonstrate that HydraLoRA outperforms other PEFT approaches, even those that rely on domain knowledge during the training and inference phases.
Related papers
- MALoRA: Mixture of Asymmetric Low-Rank Adaptation for Enhanced Multi-Task Learning [29.957620178740186]
In multi-task scenarios, challenges such as training imbalance and the seesaw effect frequently emerge.
We propose Mixture of Asymmetric Low-Rank Adaptaion (MALoRA) as a flexible fine-tuning framework.
MALoRA reduces the number of trainable parameters by 30% to 48%, increases training speed by 1.2x, and matches the computational efficiency of single-task LoRA models.
arXiv Detail & Related papers (2024-10-30T07:53:52Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
This paper focuses on the concept of task-specific directions (TSDs)-critical for transitioning large models from pretrained states to task-specific enhancements in PEFT.
We introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks.
arXiv Detail & Related papers (2024-09-02T08:10:51Z) - TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition [61.91764883512776]
We introduce an innovative PEFT method, TeamLoRA, consisting of a collaboration and competition module for experts.
By doing so, TeamLoRA connects the experts as a "Team" with internal collaboration and competition, enabling a faster and more accurate PEFT paradigm for multi-task learning.
arXiv Detail & Related papers (2024-08-19T09:58:53Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
We propose a LoRA Dropout mechanism for the LoRA-based methods.
We show that appropriate sparsity would help tighten the gap between empirical and generalization risks.
arXiv Detail & Related papers (2024-04-15T09:32:12Z) - MoELoRA: Contrastive Learning Guided Mixture of Experts on
Parameter-Efficient Fine-Tuning for Large Language Models [24.17147521556083]
We introduce a novel PEFT method: MoELoRA.
We conduct experiments on 11 tasks in math reasoning and common-sense reasoning benchmarks.
MoELoRA achieved an average performance that was 4.2% higher than LoRA, and demonstrated competitive performance compared to the 175B GPT-3.5 on several benchmarks.
arXiv Detail & Related papers (2024-02-20T09:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.