InstantFamily: Masked Attention for Zero-shot Multi-ID Image Generation
- URL: http://arxiv.org/abs/2404.19427v1
- Date: Tue, 30 Apr 2024 10:16:21 GMT
- Title: InstantFamily: Masked Attention for Zero-shot Multi-ID Image Generation
- Authors: Chanran Kim, Jeongin Lee, Shichang Joung, Bongmo Kim, Yeul-Min Baek,
- Abstract summary: "InstantFamily" is an approach that employs a novel cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation.
Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.
Related papers
- Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis [7.099258248662009]
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence.
However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image.
We leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process.
arXiv Detail & Related papers (2024-09-27T19:31:04Z) - MagicID: Flexible ID Fidelity Generation System [11.002947043723617]
Current methods face challenges in generating high-fidelity portrait results when faces occupy a small portion of the image with a low resolution.
We propose a systematic solution called MagicID, based on a self-constructed million-level multi-modal dataset named IDZoom.
MagicID consists of Multi-Mode Fusion training strategy (MMF) and DDIM Inversion based ID Restoration inference framework (DIIR)
arXiv Detail & Related papers (2024-08-17T16:34:03Z) - Synthesizing Efficient Data with Diffusion Models for Person Re-Identification Pre-Training [51.87027943520492]
We present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities.
Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities.
arXiv Detail & Related papers (2024-06-10T06:26:03Z) - ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving [66.09976326184066]
ConsistentID is an innovative method crafted for diverseidentity-preserving portrait generation under fine-grained multimodal facial prompts.
We present a fine-grained portrait dataset, FGID, with over 500,000 facial images, offering greater diversity and comprehensiveness than existing public facial datasets.
arXiv Detail & Related papers (2024-04-25T17:23:43Z) - InstantID: Zero-shot Identity-Preserving Generation in Seconds [21.04236321562671]
We introduce InstantID, a powerful diffusion model-based solution for ID embedding.
Our plug-and-play module adeptly handles image personalization in various styles using just a single facial image.
Our work seamlessly integrates with popular pre-trained text-to-image diffusion models like SD1.5 and SDXL.
arXiv Detail & Related papers (2024-01-15T07:50:18Z) - PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved
Personalization [92.90392834835751]
PortraitBooth is designed for high efficiency, robust identity preservation, and expression-editable text-to-image generation.
PortraitBooth eliminates computational overhead and mitigates identity distortion.
It incorporates emotion-aware cross-attention control for diverse facial expressions in generated images.
arXiv Detail & Related papers (2023-12-11T13:03:29Z) - PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding [102.07914175196817]
PhotoMaker is an efficient personalized text-to-image generation method.
It encodes an arbitrary number of input ID images into a stack ID embedding for preserving ID information.
arXiv Detail & Related papers (2023-12-07T17:32:29Z) - Identity Encoder for Personalized Diffusion [57.1198884486401]
We propose an encoder-based approach for personalization.
We learn an identity encoder which can extract an identity representation from a set of reference images of a subject.
We show that our approach consistently outperforms existing fine-tuning based approach in both image generation and reconstruction.
arXiv Detail & Related papers (2023-04-14T23:32:24Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.