Assessing LLMs in Malicious Code Deobfuscation of Real-world Malware Campaigns
- URL: http://arxiv.org/abs/2404.19715v1
- Date: Tue, 30 Apr 2024 17:06:27 GMT
- Title: Assessing LLMs in Malicious Code Deobfuscation of Real-world Malware Campaigns
- Authors: Constantinos Patsakis, Fran Casino, Nikolaos Lykousas,
- Abstract summary: This paper studies the deobfuscation capabilities of large language models (LLMs)
We evaluate four LLMs with real-world malicious scripts used in the notorious Emotet malware campaign.
Our results indicate that while not absolutely accurate yet, some LLMs can efficiently deobfuscate such payloads.
- Score: 7.776434991976473
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The integration of large language models (LLMs) into various pipelines is increasingly widespread, effectively automating many manual tasks and often surpassing human capabilities. Cybersecurity researchers and practitioners have recognised this potential. Thus, they are actively exploring its applications, given the vast volume of heterogeneous data that requires processing to identify anomalies, potential bypasses, attacks, and fraudulent incidents. On top of this, LLMs' advanced capabilities in generating functional code, comprehending code context, and summarising its operations can also be leveraged for reverse engineering and malware deobfuscation. To this end, we delve into the deobfuscation capabilities of state-of-the-art LLMs. Beyond merely discussing a hypothetical scenario, we evaluate four LLMs with real-world malicious scripts used in the notorious Emotet malware campaign. Our results indicate that while not absolutely accurate yet, some LLMs can efficiently deobfuscate such payloads. Thus, fine-tuning LLMs for this task can be a viable potential for future AI-powered threat intelligence pipelines in the fight against obfuscated malware.
Related papers
- Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
We show that alignment can be a powerful tool to make LLMs more robust against prompt injection attacks.
Our method -- SecAlign -- first builds an alignment dataset by simulating prompt injection attacks.
Our experiments show that SecAlign robustifies the LLM substantially with a negligible hurt on model utility.
arXiv Detail & Related papers (2024-10-07T19:34:35Z) - Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches [0.24578723416255752]
The rising use of Large Language Models to create and disseminate malware poses a significant cybersecurity challenge.
This paper provides a comprehensive overview of LLMs and their role in malware detection from diverse sources.
We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware.
arXiv Detail & Related papers (2024-09-11T19:33:44Z) - Synthetic Cancer -- Augmenting Worms with LLMs [0.0]
We present a novel type of metamorphic malware leveraging large language models (LLMs) for two key processes.
First, LLMs are used for automatic code rewriting to evade signature-based detection by antimalware programs.
The malware then spreads its copies via email by utilizing an LLM to socially engineer email replies to encourage recipients to execute the attached malware.
arXiv Detail & Related papers (2024-06-27T23:15:45Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
It has been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements.
We argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking.
arXiv Detail & Related papers (2024-02-21T18:59:13Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
Multimodal Large Language Models (MLLMs) are constantly defining the new boundary of Artificial General Intelligence (AGI)
Our paper explores a novel vulnerability in MLLM societies - the indirect propagation of malicious content.
arXiv Detail & Related papers (2024-02-20T23:08:21Z) - DeceptPrompt: Exploiting LLM-driven Code Generation via Adversarial
Natural Language Instructions [27.489622263456983]
We introduce DeceptPrompt, an algorithm that can generate adversarial natural language instructions that drive the Code LLMs to generate functionality correct code with vulnerabilities.
When applying the optimized prefix/suffix, the attack success rate (ASR) will improve by average 50% compared with no prefix/suffix applying.
arXiv Detail & Related papers (2023-12-07T22:19:06Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
Large Language Models (LLMs) have revolutionized natural language understanding and generation.
This paper explores the intersection of LLMs with security and privacy.
arXiv Detail & Related papers (2023-12-04T16:25:18Z) - The Philosopher's Stone: Trojaning Plugins of Large Language Models [22.67696768099352]
Open-source Large Language Models (LLMs) have recently gained popularity because of their comparable performance to proprietary LLMs.
To efficiently fulfill domain-specialized tasks, open-source LLMs can be refined, without expensive accelerators, using low-rank adapters.
It is still unknown whether low-rank adapters can be exploited to control LLMs.
arXiv Detail & Related papers (2023-12-01T06:36:17Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard
Security Attacks [67.86285142381644]
Recent advances in instruction-following large language models amplify the dual-use risks for malicious purposes.
Dual-use is difficult to prevent as instruction-following capabilities now enable standard attacks from computer security.
We show that instruction-following LLMs can produce targeted malicious content, including hate speech and scams.
arXiv Detail & Related papers (2023-02-11T15:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.