Scale-Robust Timely Asynchronous Decentralized Learning
- URL: http://arxiv.org/abs/2404.19749v1
- Date: Tue, 30 Apr 2024 17:54:16 GMT
- Title: Scale-Robust Timely Asynchronous Decentralized Learning
- Authors: Purbesh Mitra, Sennur Ulukus,
- Abstract summary: We consider an asynchronous decentralized learning system, which consists of a network of connected devices trying to learn a machine learning model.
In this work, we investigate the staleness criteria for such a system, which is a sufficient condition for convergence of individual user models.
We show that for network scaling, i.e., when the number of user devices $n$ is very large, if the gossip capacity of individual users scales as $Omega(log n)$, we can guarantee the convergence of user models in finite time.
- Score: 35.16231062731263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an asynchronous decentralized learning system, which consists of a network of connected devices trying to learn a machine learning model without any centralized parameter server. The users in the network have their own local training data, which is used for learning across all the nodes in the network. The learning method consists of two processes, evolving simultaneously without any necessary synchronization. The first process is the model update, where the users update their local model via a fixed number of stochastic gradient descent steps. The second process is model mixing, where the users communicate with each other via randomized gossiping to exchange their models and average them to reach consensus. In this work, we investigate the staleness criteria for such a system, which is a sufficient condition for convergence of individual user models. We show that for network scaling, i.e., when the number of user devices $n$ is very large, if the gossip capacity of individual users scales as $\Omega(\log n)$, we can guarantee the convergence of user models in finite time. Furthermore, we show that the bounded staleness can only be guaranteed by any distributed opportunistic scheme by $\Omega(n)$ scaling.
Related papers
- Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Stochastic Approximation Approach to Federated Machine Learning [0.0]
This paper examines Federated learning (FL) in a Approximation (SA) framework.
FL is a collaborative way to train neural network models across various participants or clients.
It is observed that the proposed algorithm is robust and gives more reliable estimates of the weights.
arXiv Detail & Related papers (2024-02-20T12:00:25Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
Decentralized learning computation (DFL) captures FL settings where both (i) model updates and (ii) model aggregations are carried out by the clients without a central server.
$textttDSpodFL$, a DFL methodology built on a generalized notion of $textitsporadicity$ in both local gradient and aggregation processes.
$textttDSpodFL$ consistently achieves improved speeds compared with baselines under various system settings.
arXiv Detail & Related papers (2024-02-05T19:02:19Z) - Ravnest: Decentralized Asynchronous Training on Heterogeneous Devices [0.0]
Ravnest facilitates decentralized training by efficiently organizing compute nodes into clusters.
We have framed our asynchronous SGD loss function as a block structured optimization problem with delayed updates.
arXiv Detail & Related papers (2024-01-03T13:07:07Z) - Timely Asynchronous Hierarchical Federated Learning: Age of Convergence [59.96266198512243]
We consider an asynchronous hierarchical federated learning setting with a client-edge-cloud framework.
The clients exchange the trained parameters with their corresponding edge servers, which update the locally aggregated model.
The goal of each client is to converge to the global model, while maintaining timeliness of the clients.
arXiv Detail & Related papers (2023-06-21T17:39:16Z) - Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
Language Model Finetuning Using Shared Randomness [86.61582747039053]
Language model training in distributed settings is limited by the communication cost of exchanges.
We extend recent work using shared randomness to perform distributed fine-tuning with low bandwidth.
arXiv Detail & Related papers (2023-06-16T17:59:51Z) - Federated Action Recognition on Heterogeneous Embedded Devices [16.88104153104136]
In this work, we enable clients with limited computing power to perform action recognition, a computationally heavy task.
We first perform model compression at the central server through knowledge distillation on a large dataset.
The fine-tuning is required because limited data present in smaller datasets is not adequate for action recognition models to learn complextemporal features.
arXiv Detail & Related papers (2021-07-18T02:33:24Z) - Flow-FL: Data-Driven Federated Learning for Spatio-Temporal Predictions
in Multi-Robot Systems [16.887485428725043]
We show how the Federated Learning framework enables learning collectively from distributed data in connected robot teams.
This framework typically works with clients collecting data locally, updating neural network weights of their model, and sending updates to a server for aggregation into a global model.
arXiv Detail & Related papers (2020-10-16T19:09:57Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Information-Theoretic Bounds on the Generalization Error and Privacy
Leakage in Federated Learning [96.38757904624208]
Machine learning algorithms on mobile networks can be characterized into three different categories.
The main objective of this work is to provide an information-theoretic framework for all of the aforementioned learning paradigms.
arXiv Detail & Related papers (2020-05-05T21:23:45Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.