Recommenadation aided Caching using Combinatorial Multi-armed Bandits
- URL: http://arxiv.org/abs/2405.00080v3
- Date: Tue, 15 Oct 2024 05:34:07 GMT
- Title: Recommenadation aided Caching using Combinatorial Multi-armed Bandits
- Authors: Pavamana K J, Chandramani Kishore Singh,
- Abstract summary: We study content caching with recommendations in a wireless network where the users are connected through a base station equipped with a finite-capacity cache.
We propose a UCB-based algorithm to decide which contents to cache and recommend and provide an upper bound on the regret of this algorithm.
- Score: 0.06554326244334867
- License:
- Abstract: We study content caching with recommendations in a wireless network where the users are connected through a base station equipped with a finite-capacity cache. We assume a fixed set of contents with unknown user preferences and content popularities. The base station can cache a subset of the contents and can also recommend subsets of the contents to different users in order to encourage them to request the recommended contents. Recommendations, depending on their acceptability, can thus be used to increase cache hits. We first assume that the users' recommendation acceptabilities are known and formulate the cache hit optimization problem as a combinatorial multi-armed bandit (CMAB). We propose a UCB-based algorithm to decide which contents to cache and recommend and provide an upper bound on the regret of this algorithm. Subsequently, we consider a more general scenario where the users' recommendation acceptabilities are also unknown and propose another UCB-based algorithm that learns these as well. We numerically demonstrate the performance of our algorithms and compare these to state-of-the-art algorithms.
Related papers
- Cache-Aware Reinforcement Learning in Large-Scale Recommender Systems [10.52021139266752]
cache-aware reinforcement learning (CARL) method to jointly optimize the recommendation by real-time computation and by the cache.
CARL can significantly improve the users' engagement when considering the result cache.
CARL has been fully launched in Kwai app, serving over 100 million users.
arXiv Detail & Related papers (2024-04-23T12:06:40Z) - No-Regret Caching with Noisy Request Estimates [12.603423174002254]
We propose the Noisy-Follow-the-Perturbed-Leader (NFPL) algorithm, a variant of the classic Follow-the-Perturbed-Leader (FPL) when request estimates are noisy.
We show that the proposed solution has sublinear regret under specific conditions on the requests estimator.
arXiv Detail & Related papers (2023-09-05T08:57:35Z) - Improving Recommendation System Serendipity Through Lexicase Selection [53.57498970940369]
We propose a new serendipity metric to measure the presence of echo chambers and homophily in recommendation systems.
We then attempt to improve the diversity-preservation qualities of well known recommendation techniques by adopting a parent selection algorithm known as lexicase selection.
Our results show that lexicase selection, or a mixture of lexicase selection and ranking, outperforms its purely ranked counterparts in terms of personalization, coverage and our specifically designed serendipity benchmark.
arXiv Detail & Related papers (2023-05-18T15:37:38Z) - Incentivizing Combinatorial Bandit Exploration [87.08827496301839]
Consider a bandit algorithm that recommends actions to self-interested users in a recommendation system.
Users are free to choose other actions and need to be incentivized to follow the algorithm's recommendations.
While the users prefer to exploit, the algorithm can incentivize them to explore by leveraging the information collected from the previous users.
arXiv Detail & Related papers (2022-06-01T13:46:25Z) - Modeling Attrition in Recommender Systems with Departing Bandits [84.85560764274399]
We propose a novel multi-armed bandit setup that captures policy-dependent horizons.
We first address the case where all users share the same type, demonstrating that a recent UCB-based algorithm is optimal.
We then move forward to the more challenging case, where users are divided among two types.
arXiv Detail & Related papers (2022-03-25T02:30:54Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
We propose a recommender system method using a graph-based model associated with the similarity of users' ratings.
By utilizing the advantages of Autoencoder feature extraction, we extract new features based on all combined attributes.
The experimental results on the MovieLens dataset show that the proposed algorithm outperforms many existing recommendation algorithms on recommendation accuracy.
arXiv Detail & Related papers (2021-11-06T10:47:45Z) - Bayesian decision-making under misspecified priors with applications to
meta-learning [64.38020203019013]
Thompson sampling and other sequential decision-making algorithms are popular approaches to tackle explore/exploit trade-offs in contextual bandits.
We show that performance degrades gracefully with misspecified priors.
arXiv Detail & Related papers (2021-07-03T23:17:26Z) - Confidence-Budget Matching for Sequential Budgeted Learning [69.77435313099366]
We formalize decision-making problems with querying budget.
We consider multi-armed bandits, linear bandits, and reinforcement learning problems.
We show that CBM based algorithms perform well in the presence of adversity.
arXiv Detail & Related papers (2021-02-05T19:56:31Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z) - A Soft Recommender System for Social Networks [1.8275108630751844]
Recent social recommender systems benefit from friendship graph to make an accurate recommendation.
We went a step further to identify true friends for making even more realistic recommendations.
We calculated the similarity between users, as well as the dependency between a user and an item.
arXiv Detail & Related papers (2020-01-08T13:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.