MF-OML: Online Mean-Field Reinforcement Learning with Occupation Measures for Large Population Games
- URL: http://arxiv.org/abs/2405.00282v1
- Date: Wed, 1 May 2024 02:19:31 GMT
- Title: MF-OML: Online Mean-Field Reinforcement Learning with Occupation Measures for Large Population Games
- Authors: Anran Hu, Junzi Zhang,
- Abstract summary: This paper proposes an online mean-field reinforcement learning algorithm for computing Nash equilibria of sequential games.
MFOML is the first fully approximate multi-agent reinforcement learning algorithm for provably solving Nash equilibria.
As a byproduct, we also obtain the first tractable globally convergent computational for approximate computing of monotone mean-field games.
- Score: 5.778024594615575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning for multi-agent games has attracted lots of attention recently. However, given the challenge of solving Nash equilibria for large population games, existing works with guaranteed polynomial complexities either focus on variants of zero-sum and potential games, or aim at solving (coarse) correlated equilibria, or require access to simulators, or rely on certain assumptions that are hard to verify. This work proposes MF-OML (Mean-Field Occupation-Measure Learning), an online mean-field reinforcement learning algorithm for computing approximate Nash equilibria of large population sequential symmetric games. MF-OML is the first fully polynomial multi-agent reinforcement learning algorithm for provably solving Nash equilibria (up to mean-field approximation gaps that vanish as the number of players $N$ goes to infinity) beyond variants of zero-sum and potential games. When evaluated by the cumulative deviation from Nash equilibria, the algorithm is shown to achieve a high probability regret bound of $\tilde{O}(M^{3/4}+N^{-1/2}M)$ for games with the strong Lasry-Lions monotonicity condition, and a regret bound of $\tilde{O}(M^{11/12}+N^{- 1/6}M)$ for games with only the Lasry-Lions monotonicity condition, where $M$ is the total number of episodes and $N$ is the number of agents of the game. As a byproduct, we also obtain the first tractable globally convergent computational algorithm for computing approximate Nash equilibria of monotone mean-field games.
Related papers
- Exploiting Approximate Symmetry for Efficient Multi-Agent Reinforcement Learning [19.543995541149897]
We provide a methodology to extend any finite-player, possibly asymmetric, game to an "induced MFG"
First, we prove that $N$-player dynamic games can be symmetrized and smoothly extended to the infinite-player continuum via explicit Kirszbraun extensions.
For certain games satisfying monotonicity, we prove a sample complexity of $widetildemathcalO(varepsilon-6)$ for the $N$-agent game to learn an $varepsilon$-Nash up to symmetrization bias.
arXiv Detail & Related papers (2024-08-27T16:11:20Z) - Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms [71.73971094342349]
Self-play via online learning is one of the premier ways to solve large-scale two-player zero-sum games.
We show that OMWU offers several advantages including logarithmic dependence on the size of the payoff matrix.
We prove that a broad class of algorithms that do not forget the past quickly all suffer the same issue.
arXiv Detail & Related papers (2024-06-15T13:26:17Z) - Global Nash Equilibrium in Non-convex Multi-player Game: Theory and
Algorithms [66.8634598612777]
We show that Nash equilibrium (NE) is acceptable to all players in a multi-player game.
We also show that no one can benefit unilaterally from the general theory step by step.
arXiv Detail & Related papers (2023-01-19T11:36:50Z) - Policy Mirror Ascent for Efficient and Independent Learning in Mean
Field Games [35.86199604587823]
Mean-field games have been used as a theoretical tool to obtain an approximate Nash equilibrium for symmetric and anonymous $N$-player games.
We show that $N$ agents running policy mirror ascent converge to the Nash equilibrium of the regularized game within $widetildemathcalO(varepsilon-2)$ samples.
arXiv Detail & Related papers (2022-12-29T20:25:18Z) - Representation Learning for General-sum Low-rank Markov Games [63.119870889883224]
We study multi-agent general-sum Markov games with nonlinear function approximation.
We focus on low-rank Markov games whose transition matrix admits a hidden low-rank structure on top of an unknown non-linear representation.
arXiv Detail & Related papers (2022-10-30T22:58:22Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
Two-player zero-sum Markov games are arguably the most basic setting in multi-agent reinforcement learning.
We develop a learning algorithm that learns an $varepsilon$-approximate Markov NE policy using $$ widetildeObigg.
We derive a refined regret bound for FTRL that makes explicit the role of variance-type quantities.
arXiv Detail & Related papers (2022-08-22T17:24:55Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.