Streamlining Image Editing with Layered Diffusion Brushes
- URL: http://arxiv.org/abs/2405.00313v1
- Date: Wed, 1 May 2024 04:30:03 GMT
- Title: Streamlining Image Editing with Layered Diffusion Brushes
- Authors: Peyman Gholami, Robert Xiao,
- Abstract summary: Our system renders a single edit on a 512x512 image within 140 ms using a high-end consumer GPU.
Our approach demonstrates efficacy across a range of tasks, including object attribute adjustments, error correction, and sequential prompt-based object placement and manipulation.
- Score: 8.738398948669609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion models have recently gained prominence as powerful tools for a variety of image generation and manipulation tasks. Building on this, we propose a novel tool for real-time editing of images that provides users with fine-grained region-targeted supervision in addition to existing prompt-based controls. Our novel editing technique, termed Layered Diffusion Brushes, leverages prompt-guided and region-targeted alteration of intermediate denoising steps, enabling precise modifications while maintaining the integrity and context of the input image. We provide an editor based on Layered Diffusion Brushes modifications, which incorporates well-known image editing concepts such as layer masks, visibility toggles, and independent manipulation of layers; regardless of their order. Our system renders a single edit on a 512x512 image within 140 ms using a high-end consumer GPU, enabling real-time feedback and rapid exploration of candidate edits. We validated our method and editing system through a user study involving both natural images (using inversion) and generated images, showcasing its usability and effectiveness compared to existing techniques such as InstructPix2Pix and Stable Diffusion Inpainting for refining images. Our approach demonstrates efficacy across a range of tasks, including object attribute adjustments, error correction, and sequential prompt-based object placement and manipulation, demonstrating its versatility and potential for enhancing creative workflows.
Related papers
- Lost in Edits? A $λ$-Compass for AIGC Provenance [119.95562081325552]
We propose a novel latent-space attribution method that robustly identifies and differentiates authentic outputs from manipulated ones.
LambdaTracer is effective across diverse iterative editing processes, whether automated through text-guided editing tools such as InstructPix2Pix or performed manually with editing software such as Adobe Photoshop.
arXiv Detail & Related papers (2025-02-05T06:24:25Z) - BrushEdit: All-In-One Image Inpainting and Editing [79.55816192146762]
BrushEdit is a novel inpainting-based instruction-guided image editing paradigm.
We devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model.
Our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics.
arXiv Detail & Related papers (2024-12-13T17:58:06Z) - Generative Image Layer Decomposition with Visual Effects [49.75021036203426]
LayerDecomp is a generative framework for image layer decomposition.
It produces clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects.
Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks.
arXiv Detail & Related papers (2024-11-26T20:26:49Z) - Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
Diffusion models have revolutionized the field of content synthesis and editing.
Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT)
We propose an automatic method to identify "vital layers" within DiT, crucial for image formation.
Next, to enable real-image editing, we introduce an improved image inversion method for flow models.
arXiv Detail & Related papers (2024-11-21T18:59:51Z) - ControlEdit: A MultiModal Local Clothing Image Editing Method [3.6604114810930946]
Multimodal clothing image editing refers to the precise adjustment and modification of clothing images using data such as textual descriptions and visual images as control conditions.
We propose a new image editing method ControlEdit, which transfers clothing image editing to multimodal-guided local inpainting of clothing images.
arXiv Detail & Related papers (2024-09-23T05:34:59Z) - FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models [44.26371926512843]
We introduce a novel free approach that employs progressive $textbfFre$qu$textbfe$ncy truncation to refine the guidance of $textbfDiff$usion models for universal editing tasks.
Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images.
arXiv Detail & Related papers (2024-04-18T04:47:28Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - LayerDiffusion: Layered Controlled Image Editing with Diffusion Models [5.58892860792971]
LayerDiffusion is a semantic-based layered controlled image editing method.
We leverage a large-scale text-to-image model and employ a layered controlled optimization strategy.
Experimental results demonstrate the effectiveness of our method in generating highly coherent images.
arXiv Detail & Related papers (2023-05-30T01:26:41Z) - StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing [115.49488548588305]
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images.
They either finetune the model, or invert the image in the latent space of the pretrained model.
They suffer from two problems: Unsatisfying results for selected regions and unexpected changes in non-selected regions.
arXiv Detail & Related papers (2023-03-28T00:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.